
Macroeconomic Policy: A Short Matlab Tutorial

Mario Alloza∗

October 27, 2015

Contents

1 Introduction 1

2 Basic Commands 2

2.1 Algebraic Operations 2

2.2 Matrices 2

2.3 Useful Built-in Functions 3

3 Loading and Saving 4

3.1 Importing Data 4

3.2 Exporting Data 5

3.3 Loading and saving matrices 5

4 Plots 5

5 Loops 6

5.1 The “for” Loop 6

5.2 The “while” Loop. 7

6 Functions 7

7 Debugging, Efficient Computation and

Good Practices 8

8 Learning Matlab 9

∗PhD candidate, Department of Economics, UCL. E-mail:

mario.alloza.10@ucl.ac.uk

1 Introduction

Matlab is a programming language that allows a wide

variety of numerical computations and is particularly

powerful when performing matrices manipulations.

The user’s interface includes the following windows

(see Figure 1):

� Commmand Window (highlighted in red in Fig-

ure 1): this space has a double function: (i) al-

lows the user to type in any input (commands

with instructions) and (ii) shows the output of

any requested operation.

� Workspace (highlighted in green): here is where

all created objects are stored. They can be

accessed by double-click in their icons, or typ-

ing open name of the object in the Command

Window. In both cases an Excel-like spread-

sheet (the Variable Editor Window) will pop up

listing the values of the object.

� Current Folder (highlighted in yellow): shows

the files contained in the current folder. The

current path is also shown in the box highlighted

in purple in Figure 1; it can be changed it to any

other folder.

� Command History (not shown): keeps a record

of all the commands used.

� Editor (highlighted in blue): in most cases, in-

stead of using the Command Window to type in

the instructions, we may prefer to create a file

containing a series of commands or a program

created by our own. We use the Editor to create

this files (with the extension .m appended at the

end of the filename). These m-files will usually

1

mailto:mario.alloza.10@ucl.ac.uk

be our starting point when creating a new pro-

gram. The code written in the Editor can be run

by pressing the F5 key or clicking on the green

triangle icon.

Figure 1: Matlab User’s Interface

2 Basic Commands

2.1 Algebraic Operations

To perform basic operations with scalars, we can type

them directly in the Command Window and the out-

put will be shown immediately after our command,

as in a calculator; e.g.:

5+7

20*3

3/5

ansˆ2

Matlab will store the results of these operations in

an object called ans which will be overwritten each

time we type a command. Alternatively, we can de-

fine a name for the result of an operation, e.g.:

myresult = 5+7

X = 13-11

Y = 4ˆX

Note that Matlab is case-sensitive, so X 6= x.

2.2 Matrices

Constructing Matrices A matrix can be defined

in Matlab by typing one by one its elements sep-

arating the columns by a comma (or a space) and

jumping to the next row using a semicolon (or by hit-

ting enter). Matrices are always enclosed by square

brackets []. Then, we have:

X = [3,7;1,4]

Z = [3 7

1 4]

Where X = Z, or X - Z is the null matrix.

We can transpose a matrix (switching rows by

columns) by appending the symbol ’ after a matrix,

as in:

X'

We can create new matrices by merging two or

more matrices, or appending vectors or scalars:

M = [X Z']

N = [X [3;4]]

Matrices Operations. As in the case with scalar

operations, we can perform algebraic operations with

matrices:

Y = [4 9; 12 0]

X * Y

To invert a matrix, we can either use the command

inv() or, more accurately, the “division” operator.

Keep always in mind that matrix multiplication or

division are not commutative, i.e. the order does

matter.

inv(Z)

X * inv(Z)

X / Z

We may be interested in computing the Hadamard

product (dot product) between two matrices of the

same dimensions. We then obtain a new matrix, say

2

A, with elements Ai,j = Xi,j · Yi,j , where i indexes

the rows, and j indexes the columns.

X .* Y

X ./ Y

Tip: Now we can solve system of matrices with

the tools we have used so far. Rearrange the system

to have the form: A ∗ B = C where A are the coef-

ficients, B the unknowns and C real numbers. We

can solve for the unknowns by typing: B=inv(A)*C .

Accessing to Elements of a Matrix. We can

access to the elements of a matrix, to edit them, or

to create a new variable from them. We select an

element of a matrix by writing the number of row

and column (in brackets) just after the name of the

matrix:

element 1 2 = X(1,2)

X(1,2) = 654

X(end,2) = 7

We can access a group of elements by using the

symbol :. Hence, Q(1:4,3) selects the elements from

the 1st to the 4th row in the 3rd column of matrix Q.

If we just write Q(:,3), all the elements of the 3rd

row will be selected. In our example:

X(1:2,1) = 3

X(:,2) = Y(:,2)

Some Special Matrices. Here we list some com-

mands regarding interesting matrices such as the

identity matrix, or matrices containing always the

same element:

eye(3) % a 3x3 diagonal matrix

X*eye(2) % returns matrix X

5 * eye(3) % a 3x3 diagonal matrix with 5s

zeros(3) % a 3x3 matrix of zeros

ones(4) % a 4x4 matrix of ones

diag(X) % vector with the diagonal elements

Tip: a vector of ones can be easily added to an ex-

isting matrix of regressors when we want to estimate

a model with constant: if we have T observations in

a matrix X, we can write X = [ones(T,1) X].

2.3 Useful Built-in Functions

A list with some convenient commands:

Housekeeping. clear cleans all the objects de-

fined during the work-session. clc cleans all the

commands (and their output) typed in the Command

Window. close all closes all the opened windows

showing figures.

Vectors. We can create vectors of consecutive

numbers by using the symbol :. If we write n:m,

Matlab will produce a row vector containing a list

of numbers n, n + 1, n + 2, . . . ,m − 2,m − 1,m. We

can create a column vector by transposing the row

vector. Additionally, we can create a list of num-

bers n, n + k, n + 2k, . . . ,m − 2k,m − k,m with the

command n:k:m:

1:6

(1:6)'

0:2:10

Similarly, the command linespace(x1,x2,n) will

create a row vector of n equally separated numbers

from x1 to x2.

linspace(1,10,10)'

Tip: any of the above commands, can be used to

incorporate an extra column (or row) to a matrix of

regressors containing a linear trend. How could we

add a quadratic trend to a matrix?

Elementary Functions. Commands as sqrt(),

std(), exp() or log() compute the square root, the

standard deviation, the exponential or the logarithm

of the argument inside the brackets:

sqrt(144)

std(1:6)

exp(1)

log(exp(1))

3

Note that there exist lots of built-in function in

Matlab as mean, min, max, sum, round, . . . Use the

help command to see how they work.

Time-Series Functions. When dealing with

time-series data, latest versions of Matlab include

commands such as lagmatrix(Y, n), which creates

a new matrix as Y, but lagged n periods. Note that

when estimating a time-series model, you may want

to include a number of lags, then you can substi-

tute n by a sequence of lags as 1:n. The command

diff(Y,n) will compute the n-th difference of matrix

Y. Examples:

R = [4 7; 5 8; 9 3; 12 0; 1 5];

lagmatrix(R,1:3)

diff(R,1)

Random Number Generators. Sometimes, we

may be interested in generating random numbers.

This functionality is implemented in Matlab by using

the commands rand(m,n) or randn(m,n) to gener-

ate m × n matrices of random numbers following a

uniform or a N (0, 1) distribution, respectively.

rand

rand(10,2)

randn(5)

Tip: What if we want to draw numbers from

a N (µ, σ) distribution? We could implement this

(assuming, for example µ = 5 and σ = 2 using

data=randn(10000,2)*2 + 5;. To check it, write

mean(data) and std(data).

Changing the Shape of Matrices. If we are in-

terested in replicating the same matrix a number of

times, we can make use of the Kronecker product

function built in Matlab. Recall that A ⊗ B multi-

plies each element of matrix A by the whole matrix

B, therefore, if we substitute A by a matrix of ones of

order n, we would be replicating matrix B n times.

The same can be achieved by using the command

repmat:

X = [3,7;1,4]

kron(ones(2,2),X)

repmat(X,2,2)

We can also vectorise a matrix in Matlab. Hence, a

n×m matrix would be converted into a nm×1 vector,

by stacking all the columns of the matrix. Inversely,

the command reshape(X,n,m) can change the shape

of a matrix X to a new one with n rows and m columns.

vecX = X(:)

reshape(vecX,2,2)

We can determine the size of a matrix by means

of the command size(). This particular instruction,

as many other functions implemented in Matlab, de-

livers two different objects as output: an object con-

taining the number of rows, and an object containing

the number of columns. Therefore, we have to define

the output (what is at the left hand side of the =

symbol) accordingly:

[rows columns] = size(X)

Tip: the command length(X) can alternatively

be used to compute the maximum size of matrix X

(i.e. in a n×m matrix, it returns n if n > m or m

otherwise).

3 Loading and Saving

3.1 Importing Data

Matlab can load data in excel format (.xls or .xlsx

extensions) by using the command xlsread. We will

have to specify first the name of the file (including

its extension) and the sheet where the data is place

(if there is only one sheet, you can skip this step).

Both arguments should be enclosed in ’’:

mydata = xlsread('GDPdata.xls','dataMatlab');

TIME = mydata(:,1);

GDP = mydata(:,2);

It is important to note that our Current Folder (see

section 1) must be the one that contains the file that

we are trying to load.

4

When we want to import data in other format

rather than a spreadsheet, or when we are using a

Mac (we cannot use the above command with com-

puters that do not use Microsoft Windows as opera-

tive system) we can use the command importdata:

data imp = importdata('GDPdata.csv');

mydata = data imp.data;

TIME = mydata(:,1);

GDP = mydata(:,2);

In this example we have used a comma-separated

(.csv) file, but we could have alternatively used

other types of text files. Notice that, when we use

the command importdata, the object that is created

(data imp in the above example) is what Matlab calls

a “structure”, which includes both data and text.

The second line in the above code extracts just the

data component of this structure.

3.2 Exporting Data

The easiest way to export data is to open the Variable

Editor Window (see the description of the Workspace

in section 1) and then copy the values and paste them

into Excel (or elsewhere). This can be done in a

more elegant way by using the commands xlswrite

or export

3.3 Loading and saving matrices

The commands load and save allow us to create or

open a file containing all or some of the matrices in

our Workspace. The resulting file will be readable

only by Matlab. This could be a potential solution

when using very large matrices that use up the com-

puter’s memory; in that case, by dividing a big ma-

trix in smaller ones that will be saved and loaded

sequentially, we would be able to perform certain op-

erations in a faster way.

4 Plots

Matlab is a particularly suitable tool to plot data.

The basic command for plotting a vector is plot(Y).

However, we can also type plot(X,Y) to plot data in

vector Y on vector X:

X = (1:100)';

Y1 = sin(X)

Y2 = cos(X)+2

plot(X,Y1)

When running a code/program that plots multi-

ple pictures, keep in mind that by default Matlab

will make the plots in the same window, overwrit-

ing the previous figure. To make things clear, you

can either use the command close all to close the

previous file or use the command figure before the

code regarding the plot to ask Matlab to draw the

new picture on a separate window. These windows

can be numbered: figure(1), figure(2) . . .

figure

plot(X,[Y1 Y2])

Matlab implements a wide range of plot types, a

feature which may be useful depending on the nature

of the data we want to plot:

close all

a= randn(1000,1);

hist(a)

You can manipulate the options of a plot: font,

size, colours, etc. Here we show an example of plot

using some of the available features, which can be

appreciated in Figure 2

figure

plot(log(1:50),'--k','LineWidth',2)

hold on;

plot(log(1:50)+3,'-ro','MarkerEdgeColor','k', ...

'MarkerFaceColor','g')

plot(log(1:50)+1,'-b','MarkerEdgeColor','k', ...

'LineWidth',4)

title('Different Logarithmic Functions')

legend('log(x)','log(x)+3','log(x)+1')

xlabel('X')

ylabel('logarithmic function')

axis([0 45 0 10])

Saving Plots. You can save any plot that you have

computed: in the figure window, click on File and

then on Save As. You will be able to store the graph

in a wide variety of formats: pdf, eps, png, jpg. . .

5

Figure 2: An Example of Plotting Options in Matlab

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10
Different Logarithmic Functions

X

lo
ga

rit
hm

ic
 fu

nc
tio

n

log(x)
log(x)+3
log(x)+1

You can also use the format fig, the extension for

Matlab figures, that will allow you to reopen the

saved figure in Matlab and perform operations with

it (e.g.: change the appearance of the figure).

5 Loops

When the same instruction is required to be repeated

a number of times, we may use a loop to ask Matlab

to execute this repeated instruction. The use of loops

is very common in programming, and can enormously

simplify one’s code.

5.1 The “for” Loop

A Simple “for” Loop. The for loop repeats

the same instruction as many times as we de-

fine. The syntax is very simple: the instruc-

tion to be repeated is preceded by the command

for index=first iteration:last iteration and

is followed by end. For example:

for n=1:3

n

end

Nested Loops. We can nest two ore more for

loops to execute different operations. In the follow-

ing example, we are defining each element of matrix

Wn,m in row n and column m as Wn,m = nm. There-

fore, we use two nested for loops to “scan” each

element in the matrix W and compute the operation

(we would have used three loops for a 3-dimensional

matrix):

W = zeros(5,4)

[rows columns] = size(W)

for m=1:columns

for n=1:rows

W(n,m) = n.ˆm

end

end

Example: generating a Random Walk. Arti-

ficial time-series data (or any operation requiring a

recursive computation) can be generated using a for

loop. In this example we generate the following time

series: yt = yt−1 + εt, where εt ∼ N (0, 1) and y0 = 0.

y = zeros(100,1);

eps = randn(100,1);

for i=2:100

y(i,1) = y(i-1,1) + eps(i,1),

end

plot(y)

A Simple “for” Loop with Conditional State-

ments. We often want to compute an instruction

conditional to some statement. In this situation, we

can use the command if condition to be checked

followed by the instruction and the command end.

Additionally, we can add the command else to de-

fine a new operation to be executed if the condition is

not met (Note: we could even add further conditions

by using the command elseif):

P = [rand(20,1) zeros(20,1)];

for i = 1:length(P)

if P(i,1) ≥ 0.5

P(i,2) = 100;

else

P(i,2) = -2;

end

end

6

5.2 The “while” Loop.

This loop, will execute the instruction for an unde-

fined number of times until some condition is met.

The syntax is very similar to the for loop. You

should keep in mind to observations when using this

kind of loops. First, before the loop finishes (i.e. be-

fore writing end), we have to write an instruction

to tell Matlab that the loop must be kept running

before the condition is not met. Second, the while

loop can be running an infinite number of times if the

condition is not met; if this is due to a programming

error you must stop Matlab with Ctrl+C.

draw = rand

while draw <0.9

display('The draw was below 0.9, try again.')

draw = rand

end

6 Functions

Commands such as mean() or rand() call built-in

functions already incorporated in Matlab. However,

we can create our own functions to perform some

specific tasks. In this way, we will simplify our code

both because we don’t have to replicate code (instead

of writing the same set of instructions twice, we can

just call our function) and because our program will

be more readable when having fewer lines in the main

file, creating separated files with functions to execute

specific tasks.

When writing a function we will use the following

syntax:

1. begin the file with function [output 1,

output 2 ...] = function name(input 1,

input 2...)

2. write all the instructions that making use of

input 1, input 2... specified by the user will

produce output 1, output 2 Obviously,

we must use the same names to define the out-

put variables as we defined them in the previous

point.

3. end the function file with the command end.

When using our own function, it is important to

notice the following:

� The function name specified above, must be the

same name that we used to save the new .m file:

if our function is called ComputeStdErrors, the

new file containing the function will be saved as

ComputeStdErrors.m.

� We can call the function form our main file

by writing [result 1, result 2 ...] =

function name(argument 1, argument 2...).

Note that we write result and argument

instead of output and input to emphasise that

the names give to these variables don’t need to

be the same.

To illustrate the use of functions, the next exam-

ple creates artificial data and runs an OLS estima-

tion of the classical linear model by means of a func-

tion defined by our own function, called OLSestim.

This example is also meant to summarise some of the

highlighted concepts shown in this short tutorial.The

main file is:

% OLS estimation of artificially generated data

% We assume we know the true DGP

T = 50000; % number of observations

eps = randn(T,1)*7; % errors

X = randn(T,1)*2 + 3; % regressors

X = [ones(T,1) X]; %include a constant

beta true = [0.7 1.2]'; % true parameter

Y = X*beta true + eps;

% Run the estimation

[beta estim,sigma estim] = OLSestim(X,Y);

display('The true parameters are:');

beta true

display('The estimated parameters are:');

beta estim

% Repeat the estimation B times

% for different draws of epsilon

B = 1000;

beta mat = zeros(B,2);

for i=1:B

eps = randn(T,1)*7;

Y = X*beta true + eps;

[beta mat(i,:), sigma mat(i,:)] = OLSestim(X,Y);

end

7

display('Mean estimation of the slope coeff.:')

mean(beta mat(:,2))

hist(beta mat(:,2),50)

Figure 3: Distribution of the Slope Estimator over

Different Samples

1.15 1.2 1.25
0

100

200

300

400

500

600

700

The m-file containing the function OLSestim is:

function [beta hat,sigma hat] = OLSestim(XX,YY)

beta hat = inv(XX'*XX)*XX'*YY;

% Alternatively, a more efficient code would be:

% beta estimt = X\Y;

residuals = YY - XX*beta hat;

df = length(XX)-length(beta hat);

sigma sq = (residuals'*residuals)/df;

sigma hat = sqrt(sigma sq);

end

7 Debugging, Efficient Computa-

tion and Good Practices

Unfortunately, our own programs will not always run

smoothly and some programming mistakes must be

detected. Despite Matlab offers some tools to make

this task less painful, writing “clean” and fast code,

can save us hours (or even days!). Here there are

some tips:

� Try to use functions to separate from the main

code those tasks that are to be repeated a num-

ber of times or that contain specific code which

can be easily isolated front the core of our pro-

gram. Ideally, a Matlab project will involve a

bunch of programs/functions which are called

from a “master” m-file.

� Be generous writing comments (using the sym-

bol %). Despite that is a tedious thing to do

when writing code, it will prove to be a very use-

ful practice when you come back to your projects

after some time.

� Keep it simple. Avoid complex names for new

variables and try to find a method that works

for you.

� Keep it smart. There are many ways to deal

with the same task, however, more elegant ways

tend to make your code more understandable

by others and even by your own (e.g. copy and

paste several times the some code lines can be

substituted by a loop).

� Efficient Computation. Among other features of

your computer, Matlab performance is strongly

correlated with your computer processor. How-

ever, programs can run much faster when we

avoid tasks that are particularly slow for Mat-

lab:

– Matlab loves matrices: when possible, use

matrix operations rather than loops. Ex-

ample: using a loop to execute the same in-

struction for each element of a matrix may

be slower than doing once the instruction

for the whole matrix.

– When running a loop that stores the results

in a matrix, it is faster to define this con-

taining only zeros before the loop starts,

rather than letting the size of the matrix

growing in each iteration.

– Some commands are faster than others

while producing the same results: Y/X is

faster than X*inv(Y).

8

– To check the time that Matlab takes to per-

form an operation you can use tic and toc

as in tic; randn(10000,1); toc.

� Take advantage of Matlab capabilities. You can

divide your code in cells (see the Matlab menu

called “Cells”) by writing two comment symbols

%% for each cell. Matlab allows you to evaluate

these cells instead of the whole program, some-

thing that may be useful at the early stages of

your project.

� When debugging, it is sometimes very conve-

nient to check that Matlab is doing what you

think it should be doing. Setting breakpoints

(see Matlab menu “Debugging” or click at the

right of a line number in for code until a red ball

appears) while make Matlab execute all the code

until this point and allow you to progress step

by step from that point onwards. This is partic-

ularly interesting when running a code that in-

volves functions, since when Matlab is executing

a function, the objects created by this functions

are not stored unless they are defined as output.

� You can also compare that two alternative pro-

cedures yield the same results by using con-

ditional statements: true statements as 3==3

will return 1 as an answer, while false state-

ments as 3==5 will return 0 as an answer.

If you want to compare two vector of re-

sults that seem to have similar results but you

cannot check it due to its large dimension,

min(my result 1==my result 2) should be 1,

otherwise, the two methods are not equivalent

for some cases.

8 Learning Matlab

Matlab implements a wide variety of functions. Since

remembering all the bells and whistles of each one is a

hard thing to do, Matlab incorporates a detailed doc-

umentation of each command. You can access to this

information by writing help unknown command. Ad-

ditionally, use the “Help” menu to browse and search

all the functions implemented to check if Matlab al-

ready incorporates what you are looking for. For

example, there is no need to program a Choleski de-

composition when the command chol() already does

this.

One of the greatest advantage of Matlab is that is

a widely used software. That means that there ex-

ist a lot of code already written. Some economists

share freely their code what makes learning much

easier: visit for example the webpages of Chris Sims,

Larry Christiano or Mart́ın Uribe for some examples.

Some journals as the Review of Economic Dynamics

or some articles of American Economic Review in-

clude code replicating the results of the published

papers; that’s a perfect opportunity to see how a

professional code looks like.

9

	Introduction
	Basic Commands
	Algebraic Operations
	Matrices
	Useful Built-in Functions

	Loading and Saving
	Importing Data
	Exporting Data
	Loading and saving matrices

	Plots
	Loops
	The ``for'' Loop
	The ``while'' Loop.

	Functions
	Debugging, Efficient Computation and Good Practices
	Learning Matlab

