Computational Tools for Macroeconomics using
MATLAB

Week 1 - Introduction to MATLAB &
Computational Thinking

Cristiano Cantore

Sapienza University of Rome

Who am |

> Personal Website: www.cristianocantore.com
» Email: cristiano.cantore@uniroma.it
» Office hours: by appointment.

https://www.cristianocantore.com
mailto:cristiano.cantore@uniroma1.it

Course Info

» Course website: www.ccantore.github.io/computational-macro-matlab
> Classes: Monday 10:00-12:00 - ECODIR LAB
* | will usually start at 10.05 and finish around 11.35.
= | will be available for questions after the class until 11.55.
» If you can bring your laptop!
» | have created a google group for the course. Make sure to join it!

* | will post announcements and important information there.
* |t will also be the place to ask questions and get help.
* Do not email me directly with questions about the course, use the google group

instead!

https://ccantore.github.io/computational-macro-matlab
https://groups.google.com/a/uniroma1.it/g/ctfm-forum

Course Overview & Objectives

» Introduce students to computational tools for macroeconomic analysis.
» Gain proficiency in MATLAB for solving and simulating economic models.

» Bridge theory and practice: from analytical models to numerical
implementation.

> Prepare for empirical work and research projects in macroeconomics.

Why Computational Tools in Macroeconomics?

» Modern macro relies on numerical methods for solving models.
» Many models are too complex for closed-form solutions.
» Simulation is essential for quantitative policy analysis.

> MATLAB is widely used in academia, central banks, and policy institutions.

Course Structure

vy

Weekly lectures: mix of theoretical introduction and coding practice.

Readings: won't follow one textbook. most material on coding is outdated one
year after! | suggest some readings every week for dig deeper but first make
sure you understand the slides.

Hands-on MATLAB sessions embedded in lectures.

Homework exercises with provided templates.

Website with all the material. Important: The website will be populated as we
move along the course. Make sure you check for updates and

Assessment: TBD. Probably you can choose between submitting weekly
assignments (randomly marked) or a final project.

Learning Outcomes

By the end of this week, students will be able to:
Understand the MATLAB interface and basic commands.
Manage scripts and functions.

Use variables, vectors, matrices, and basic operations.
Create and interpret simple plots.

Perform basic operations in MATLAB.

1.

AN S S

MATLAB Interface

» Command Window: run commands, see
output.

» Workspace: variables currently in
memory.

» Current Folder: file navigation and path
context. s T

» Command History: recall previous
commands. (not shown)

Screenshot: MATLAB Desktop (Command
Window, Workspace, Current Folder)

MATLAB Interface

» Editor: write and run scripts/functions
(.m files).

G io% T4 U S 100601

Screenshot: MATLAB Desktop (Editor)

MATLAB Syntax Basics

» Variables: dynamic typing, case-sensitive (X # x).

> Operators: + — « / ~ (matrixops), .» ./ .~ (elementwise).
> Vectors/Matrices: row [1 2 3], column [1;2;3].

» Indexing: 2 (i, j), slicesa(:,2),ranges 1:10.

> Comments: $ this is a comment.

>

Semicolons: suppress output with ; for cleaner logs and faster runs.

Scripts vs. Functions

Scripts (.m)
» Sequence of commands executed top-to-bottom.
» Share the base workspace.
» Good for quick workflows and reproducing analyses.

Functions (function ... end)
> Take inputs, return outputs.
» Own local workspace (avoid polluting the base workspace).
> Reusable, testable components (recommended for larger projects).

Example: Minimal Script

weekl intro.m
% Parameters and simple computation
alpha = 0.33;

k = (1:10)"; % capital grid column vector
y = k.”alpha; % production function y = k”alpha

plot (k, vy); xlabel('k’); vylabel('y’);
title('Production Function y = k~{\alpha}l’);

> Save as weekl_intro.min the Current Folder.

» Run via Run button or type week1_intro in Command Window.

Example: Minimal Function

prod_cd.m
function y = prod_cd(k, alpha)
$PROD_CD Cobb-Douglas production y = k”alpha
% y = PROD_CD (k, alpha) computes k.”alpha elementwise
y = k.”alpha;
end

> Save as prod_cd.m. Call from a script or Command Window:

> k = (1:10)"; y = prod_cd(k, 0.33); plot(y);

Running Commands, Scripts, and Functions

» Commands: typed in the Command Window (e.g., x = 2+2).
» Scripts: run with the green Run button or by name.
» Functions: called with inputs/outputs (e.g., vy = prod_cd (k,0.33)).

Paths and Current Folder
» Ensure your Current Folder contains your code or add folders with addpath ().
» Use which functionName to check what MATLAB is calling.

Common Pitfalls in MATLAB

vVvyyvyyvyy

v

Case sensitivity: var # var.
Overwriting built-in functions: Avoid using names like sum, mean, plot.
Current folder confusion: Make sure your script is in the active directory.

Semicolons: Missing semicolons prints output for every line.

Vector vs. matrix dimensions: Watch for errors in element-wise (. %, . /) vs.
matrix operations (, /).

Clear misuse: Excessive use of clear all removes useful variables and slows
work.

Data Types: Scalars, Vectors, Matrices

» Scalar: Single number.
» Vector: One-dimensional array (row or column).
> Matrix: Two-dimensional array.

Examples
a = 5; % Scalar
v = [1, 2, 31; % Row vector
u = [1; 2; 3]1; % Column vector
M= [123; 45 6]; % 2x3 matrix

Indexing and Slicing

> MATLAB uses 1-based indexing.
> Access elements with & (i, J).
» Colon operator (:) for slices and ranges.

Examples
v = [10, 20, 30, 40, 501;

v (1) % first element —-> 10

v (end) % last element -> 50

v(2:4) % slice —> [20 30 40]

M= [123; 45%6; 78 9];

M(2,3) % element at row 2, col 3 -> 6
M(:,2) % entire 2nd column -> [2; 5; 8]
M(1:2,:) % first 2 rows, all columns

Preallocation

> Efficient coding requires preallocating arrays.
» Avoids MATLAB dynamically resizing in loops.

> Use zeros, ones, nan.

Example
% Bad practice (slow)
for 1 = 1:1000
x (1) = 1i72;
end

% Good practice (preallocate)
X = zeros(1,1000);
for i = 1:1000

x(1i) = 1i72;

Basic Operations

» Standard arithmetic: +, -, *, /, ~.
> Matrix vs. elementwise operations.

Examples
A= 1[12; 3 4];
B =[5 6; 7 8];

A « B % matrix multiplication (2x2 * 2x2)
A .x B % elementwise multiplication
A."2 % elementwise square

Built-in Functions

» MATLAB includes many functions for numerical work.
» Functions often work on vectors/matrices automatically.

Examples
v =1[1, 2, 3, 4, 5];
mean (v) % average —> 3
sum (v) % sum —-> 15
max (v) % maximum -> 5
std (v) % standard deviation
plot (v) % quick plot

Importing and Exporting Data

» Load data from files with built-in functions.
» MATLAB supports CSV, Excel, MAT-files.

Examples
% Load CSV
data = readmatrix(’data.csv’);

% Save data
writematrix (data, "output.csv’);

% Load Excel

data = readtable(’data.xlsx’);
% Save data

writetable (data, ’'output.csv’);

Tip
Use the Import Tool (GUI) to preview data before importing.

Saving and Loading the Workspace

> Save current workspace:

save (myWorkspace.mat’)

> Reload saved workspace:

load (myWorkspace.mat”’)

> Useful to:

* Resume work later without re-running scripts.
* Share variables with colleagues.

> MATLAB saves variables in binary .mat format.

Getting Help

> MATLAB provides extensive documentation.
» Use help and doc commands.

Examples

help mean short description

S
o
doc mean % open full documentation
S
o

lookfor average search functions related to ’"average’

Tip

Use tab-completion in the editor to explore function options.

Plotting Basics

> plot () creates simple 2D line plots.
» Add labels and titles with x1abel (), ylabel (), title ().

Example
x = 0:0.1:10;
y = sin(x);

plot (x, V)
xlabel (' x—axis’)
ylabel (sin(x)’)
title ('’ Sine function’)

Tip
Always label axes and add a title for clarity!

Line Styles and Economic Data

» Customize plots with line styles (* -7, 7 : *) and markers (" o, " «").
» Useful for comparing series (e.g., GDP vs. consumption).

Examples
t = 2000:2010;
GDP = [1.5 1.7 2.0 2.3 2.5 2.7 2.9 3.1 3.4 3.6 3.8];
cC =11.21.31.51.6 1.8 1.9 2.0 2.2 2.3 2.5 2.6];

plot(t, GDP, '-0o', t, C, "——x")
xlabel (" Year’)

ylabel ("Trillion USD’)

title ('GDP and Consumption’)
legend (' GDP’, " Consumption’)

Challenge

Given: a vector of annual GDP data (levels).
Tasks:

1. Compute annual growth rates (in %).

2. Compute average GDP.

3. Plot GDP over time with labels and title.
4. Save the workspace and export the figure.

Deliverables:
» Script: weekl_challenge.m

> Files saved: myWorkspace.mat, gdp_plot.png

Homework / Practice

> Create a MATLAB script to load a CSV with nominal and real GDP data.

» Compute GDP deflator and inflation.

> Plot Real GDP, Nominal GDP and Inflation over time with labels and title.
» Compute growth rates for Real GDP and plot it.

> Save plots as PNG and MATLAB figures.

Next Week

Next week: Week 2 - Programming Basics: Loops, Conditionals, Functions.

	Introduction
	Introduction to MATLAB
	Data Types & Variables
	Basic Operations & Workflow
	Plotting Basics
	Hands-On Practice

