
Computational Tools for Macroeconomics using
MATLAB

Week 2 – Programming Basics: Loops,
Conditionals, Functions

Cristiano Cantore

Sapienza University of Rome

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 1

Recap – Week 1

▶ Introduction to MATLAB interface: Command Window, Workspace, Editor.
▶ Created simple scripts and ran them from the Editor.
▶ Defined and manipulated scalars, vectors, and matrices.
▶ Used MATLAB Help functions: help, doc, lookfor.
▶ Produced basic plots.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 2

Recap – Week 1 (cont.)

▶ Learned to save and reload the Workspace.
▶ Saved and loaded data from .mat and .csv files.
▶ Started with simple economic examples (production function, GDP data).
▶ Homework: How did it go?

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 3

Why Programming Structures?

▶ Automation: Let MATLAB do repetitive tasks for you.
▶ Avoid Repetition: Write code once, use it many times.
▶ Modularity: Break problems into smaller, reusable functions.
▶ Clarity: Well-structured code is easier to read, debug, and maintain.
▶ Efficiency: Loops and conditionals allow complex computations with little code.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 4

Week2 Learning Outcomes

By the end of this week, students will be able to:
1. Use if/else statements.
2. Write for and while loops.
3. Create MATLAB functions.
4. Debug and profile MATLAB code.
5. Understand good coding practices for reproducibility.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 5

Example: GDP Growth over 10 Years
Manual approach (tedious):

GDP1 = GDP0 * (1+g);
GDP2 = GDP1 * (1+g);
GDP3 = GDP2 * (1+g);
...
GDP10 = GDP9 * (1+g);

With a loop (efficient):

GDP(1) = GDP0;
for t = 2:10

GDP(t) = GDP(t-1) * (1+g);
end

▶ Manual: repetitive, error-prone, not scalable.
▶ Loop: concise, flexible (works for any horizon).

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 6

Example: GDP Growth over 10 Years
Manual approach (tedious):

GDP1 = GDP0 * (1+g);
GDP2 = GDP1 * (1+g);
GDP3 = GDP2 * (1+g);
...
GDP10 = GDP9 * (1+g);

With a loop (efficient):

GDP(1) = GDP0;
for t = 2:10

GDP(t) = GDP(t-1) * (1+g);
end

▶ Manual: repetitive, error-prone, not scalable.
▶ Loop: concise, flexible (works for any horizon).

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 6

Example: GDP Growth over 10 Years
Manual approach (tedious):

GDP1 = GDP0 * (1+g);
GDP2 = GDP1 * (1+g);
GDP3 = GDP2 * (1+g);
...
GDP10 = GDP9 * (1+g);

With a loop (efficient):

GDP(1) = GDP0;
for t = 2:10

GDP(t) = GDP(t-1) * (1+g);
end

▶ Manual: repetitive, error-prone, not scalable.
▶ Loop: concise, flexible (works for any horizon).

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 6

Booleans and Logical Operators

▶ A Boolean is a truth value: true (1) or false (0).
▶ Generated by relational operators: <, <=, >, >=, ==, =.
▶ Combined with logical operators:

✱ & – AND (elementwise)
✱ | – OR (elementwise)
✱ ˜ – NOT (negation)

▶ Example:
x = 5; y = 10;
(x < y) & (y < 20) % true
~(x == y) % true

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 7

If / Else: Syntax

Basic pattern
if condition

% statements
elseif other_condition

% statements
else

% statements
end

Relational: < <= > >= == = Logical: & | ˜ Short-circuit: && ||

▶ & / | operate elementwise on arrays; && / || compare single booleans.
▶ Use isequal, isnan, isempty for robust checks.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 8

Short-Circuit Operators: && and ||

▶ Used only with scalar Booleans.
▶ MATLAB stops evaluating once the result is known.
▶ Helps avoid unnecessary or unsafe computations.

Example: Safe Division
x = 5;
y = 0;

if (y ~= 0) && (x/y > 1)
disp(’True’)

else
disp(’False’)

end

▶ With &&, second condition is skipped if y =0 is false.
▶ Prevents division by zero error.
▶ With &, both conditions are always evaluated → error.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 9

Short-Circuit Operators: && and ||

▶ Used only with scalar Booleans.
▶ MATLAB stops evaluating once the result is known.
▶ Helps avoid unnecessary or unsafe computations.

Example: Safe Division
x = 5;
y = 0;

if (y ~= 0) && (x/y > 1)
disp(’True’)

else
disp(’False’)

end

▶ With &&, second condition is skipped if y =0 is false.
▶ Prevents division by zero error.
▶ With &, both conditions are always evaluated → error.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 9

Example: Classify Growth

g = 100 * (GDP(2:end)./GDP(1:end-1) - 1); % percent growth
lab = strings(size(g));
for t = 1:numel(g)

if g(t) > 0
lab(t) = "Expansion";

elseif g(t) < 0
lab(t) = "Contraction";

else
lab(t) = "Flat";

end
end

▶ Replace the loop with vectorised logic later (practice).
▶ Discuss ties / near-zero: thresholding with abs(g)<1e-6.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 10

Input Validation Pattern (for functions) - we will return on this

function FV = compound_interest(P, r, n)
% COMPOUND_INTEREST FV = P * (1+r)^n
% Example: FV = compound_interest(100, 0.05, 10);

% --- input checks
if ~isscalar(P) || P <= 0, error(’P must be positive scalar’); end
if ~isscalar(r) || r <= -1, error(’r > -1 required’); end
if ~isscalar(n) || n < 0 || fix(n) ~= n

error(’n must be a nonnegative integer’);
end

FV = P * (1 + r)^n;
end

▶ Use error/warning/assert to fail fast.
▶ Add a help block (first commented lines) for documentation.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 11

Debugging Tip for Conditionals

▶ Set a breakpoint on the if line; inspect variables when the branch is taken.
▶ Stop automatically on errors:

>> dbstop if error
>> run(’week2_debug.m’)
K>> % MATLAB is now paused in debug mode at the error line

▶ Step through with Step In/Over/Out; watch lab(t) change.
▶ Common gotcha: using && on vectors (works only for scalars) — use & for

elementwise logical operations.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 12

Practical Example: Debugging Growth Classification
Buggy code:

g = 100 * (GDP(2:end)./GDP(1:end-1) - 1);
lab = strings(size(g));
if g > 0 && g < 5

lab = "Moderate expansion";
end

Problem:
▶ g is a vector, but && only works for scalars.
▶ MATLAB throws: Operands to the && operator must be convertible

to logical scalar values.
Debugging with breakpoints:
▶ Place a breakpoint on the if line.
▶ Inspect g: confirm it’s a vector.
▶ Fix by using elementwise logic:

idx = (g > 0) & (g < 5);
lab(idx) = "Moderate expansion";

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 13

Practical Example: Debugging Growth Classification
Buggy code:

g = 100 * (GDP(2:end)./GDP(1:end-1) - 1);
lab = strings(size(g));
if g > 0 && g < 5

lab = "Moderate expansion";
end

Problem:
▶ g is a vector, but && only works for scalars.
▶ MATLAB throws: Operands to the && operator must be convertible

to logical scalar values.

Debugging with breakpoints:
▶ Place a breakpoint on the if line.
▶ Inspect g: confirm it’s a vector.
▶ Fix by using elementwise logic:

idx = (g > 0) & (g < 5);
lab(idx) = "Moderate expansion";

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 13

Practical Example: Debugging Growth Classification
Buggy code:

g = 100 * (GDP(2:end)./GDP(1:end-1) - 1);
lab = strings(size(g));
if g > 0 && g < 5

lab = "Moderate expansion";
end

Problem:
▶ g is a vector, but && only works for scalars.
▶ MATLAB throws: Operands to the && operator must be convertible

to logical scalar values.
Debugging with breakpoints:
▶ Place a breakpoint on the if line.
▶ Inspect g: confirm it’s a vector.
▶ Fix by using elementwise logic:

idx = (g > 0) & (g < 5);
lab(idx) = "Moderate expansion";

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 13

For Loops — Syntax

Pattern
for i = start:step:finish

% statements using i
end

▶ Common shorthand: for i = 1:N (step defaults to 1).
▶ Loop variable i is a scalar (changes each iteration).
▶ Prefer preallocation for arrays you fill inside loops.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 14

For Loops — Demo: First 10 Squares

N = 10;
sq = zeros(1, N); % preallocate
for i = 1:N

sq(i) = i^2;
end

disp(sq) % [1 4 9 16 25 36 49 64 81 100]

▶ Preallocation avoids growing sq in each iteration.
▶ Equivalent vectorised form: sq = (1:N).^2;

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 15

Exercise — First 10 Fibonacci Numbers

▶ Compute the sequence F1 = 1, F2 = 1, Ft = Ft−1 + Ft−2 for t = 3, . . . , 10.
▶ Store results in a row vector F of length 10.

N = 10;
F = zeros(1, N); % preallocate
F(1) = 1; F(2) = 1;

for t = 3:N
F(t) = F(t-1) + F(t-2);

end

disp(F)

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 16

While Loops — Syntax

Pattern
while condition

% statements
end

▶ Use when the number of iterations is not known in advance.
▶ Always ensure the condition will eventually become false.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 17

While Loops — Demo: Doubling GDP to a Threshold

GDP0 = 100; % initial level
g = 0.05; % 5% growth per period
threshold = 200;

GDP = GDP0;
t = 0;
while GDP < threshold

GDP = GDP * (1 + g);
t = t + 1;

end

fprintf(’Reached %.1f after %d periods.\n’, GDP, t);

▶ Classic use case: keep iterating until a stopping rule is met.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 18

Performance Note — Loops vs. Vectorisation

rng(123); % reproducibility
x = rand(1e6,1); % 1 million draws

% Loop sum
tic
s1 = 0;
for i = 1:numel(x)

s1 = s1 + x(i);
end
t_loop = toc;

% Vectorised sum
tic
s2 = sum(x);
t_vec = toc;

fprintf(’loop: %.4fs | vectorised: %.4fs | diff = %.3g\n’, ...
t_loop, t_vec, abs(s1-s2));

▶ Vectorised code is usually faster and clearer.
▶ Use loops when logic is sequential or complex; still preallocate.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 19

Functions: Concept

▶ Modular blocks of code: encapsulate a task once, reuse many times.
▶ Inputs→ outputs: clear interfaces make code reliable and testable.
▶ Local workspace: variables inside a function do not leak to base workspace.
▶ Reproducibility: functions + fixed rng seeds + saved scripts.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 20

Function Syntax (Anatomy)

Basic pattern (in a file myFunction.m)
function out = myFunction(in1, in2)
% MYFUNCTION One-line description
% out = MYFUNCTION(in1, in2) returns in1 + in2.

out = in1 + in2;
end

▶ File name must match the main function name.
▶ First comment block is the help text shown by help myFunction.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 21

Demo: compound_interest(P,r,n)

File: compound_interest.m
function FV = compound_interest(P, r, n)
% COMPOUND_INTEREST FV = P * (1 + r)^n
% FV = COMPOUND_INTEREST(P, r, n) computes the final value
% of principal P after n periods at rate r (per period).

FV = P * (1 + r)^n;
end

▶ Call from script or Command Window:

FV = compound_interest(100, 0.05, 10);

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 22

Exercise: Input Validation with if

Extend compound_interest.m
function FV = compound_interest(P, r, n)
% FV = COMPOUND_INTEREST(P, r, n) computes the final value
% of principal P after n periods at rate r (per period).
% Example: FV = compound_interest(100, 0.05, 10);

% --- input checks
if ~isscalar(P) || P <= 0, error(’P must be positive scalar’); end
if ~isscalar(r) || r <= -1, error(’r > -1 required’); end
if ~isscalar(n) || n < 0 || fix(n) ~= n

error(’n must be a nonnegative integer’);
end

FV = P * (1 + r)^n;
end

▶ Add a brief help text at the top and 1–2 usage examples.
Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 23

Debugging Functions: dbstop and dbstep

▶ Stop at the source of errors:

dbstop if error

▶ Run your script that calls the function; MATLAB pauses on the error line inside
the function.
▶ Inspect variables in the Workspace; hover for tooltips.
▶ Step through execution:

dbstep % step to next line
dbstep in % step into a called function
dbstep out % step out to caller
dbquit % exit debug mode

▶ Tip: place a breakpoint on a suspicious line or use dbstop in
compound_interest at 10.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 24

Anonymous Functions

▶ One-liner functions, defined directly in the Command Window or script.
▶ Syntax:

f = @(x) x.^2 + 1;
f(3) % returns 10

▶ Accept multiple inputs:

u = @(c, alpha) (c.^(1-alpha) - 1) / (1-alpha);
u(2, 0.5) % CRRA utility

▶ Useful for:
✱ Quick experiments without creating a new .m file.
✱ Passing functions as arguments (e.g. to solvers or optimizers).
✱ Compact mathematical expressions.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 25

Why Good Practices Matter

▶ Code is read more often than it is written.
▶ Clear structure makes debugging and collaboration easier.
▶ Reproducibility: you (and others) can rerun analyses later.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 26

Comments and Help Text

▶ Use % for inline comments.
▶ At the start of a function, write a block of comments as documentation.

function FV = compound_interest(P, r, n)
% COMPOUND_INTEREST computes future value of an investment.
% FV = compound_interest(P, r, n) returns the value of
% principal P invested at rate r for n periods.
%
% Example:
% FV = compound_interest(100, 0.05, 10);

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 27

Naming Conventions

▶ Use descriptive names: GDP_growth, not x.
▶ Functions: verbs (computeGDP, plotResults).
▶ Constants: ALL_CAPS if useful (PI, MAX_ITER).
▶ Stick to consistent style (camelCase, snake_case, etc.).

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 28

Reproducibility

▶ Save scripts and functions with meaningful names.
▶ Save figures (saveas, exportgraphics).
▶ Keep track of versions (consider Git later).
▶ Record random seeds if simulations are used (rng(123)).

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 29

Project Structure

Suggested layout:
▶ /code – scripts, functions
▶ /data – raw and processed data
▶ /figures – plots, outputs
▶ /docs – notes, reports

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 30

Good Practices Checklist

▶ Comment your code: explain why, not just what.
▶ Write help text: every function should start with documentation.
▶ Name things clearly: avoid x1, x2, use descriptive names.
▶ Stay consistent: pick a naming style and stick to it.
▶ Save outputs: scripts, figures, and data files.
▶ Organise projects: separate code, data, and results into folders.
▶ Reproducibility: set random seeds, keep track of versions.

“Write code your future self will thank you for.”

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 31

Challenge (15 min)

Task: Simulate a GDP path with shocks and plot it.
▶ Write a function gdp_simulate(G0, g, sigma, T, seed) that returns a

vector G of length T+1.
▶ Model: Gt+1 = Gt · (1+ g+ ϵt), where ϵt ∼ N (0, σ2).
▶ Use rng(123) for reproducibility and randn for shocks.
▶ Run for T=20 periods with chosen G0, g, sigma, and plot the path.

Deliverables:
▶ Function file: gdp_simulate.m
▶ Driver script: week2_challenge.m that calls the function and makes the plot.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 32

Starter Code (students complete)

% File: gdp_simulate_starter.m
function G = gdp_simulate_starter(G0, g, sigma, T,seed)
% GDP_SIMULATE Simulate GDP path with shocks over T periods.
% G = GDP_SIMULATE(G0, g, sigma, T, seed) returns a column vector of
% length T+1 with G(1) = G0.
%
% Model: G(t+1) = G(t) * (1 + g + eps_t), eps_t ~ N(0, sigma^2).
% Optional: provide ’seed’ for reproducibility.

% --- Input checks (optional) ---
% if ~isscalar(G0) || G0 <= 0, error(’G0>0 required’); end
% if ~isscalar(T) || T < 1 || fix(T)~=T, error(’T integer >= 1’); end

% --- Generate shocks ---
%>>> Students complete the update below <<<
% eps = ...

% --- Initialize path ---
G = zeros(T+1,1);
G(1) = G0;

% --- Loop to simulate path ---
for t = 1:T

% >>> Students complete the update below <<<
% G(t+1) = ...

end
end

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 33

Starter Code (students complete)

% File: week2_challenge_starter.m (driver)
% choose values

%>>> Students complete below <<<

% Call the function (students will need to complete it first!)
%>>> Students complete below <<<

% Plot the result
%>>> Students complete below <<<

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 34

Homework / Practice

1. Write a function that simulates GDP growth over T periods with shocks. (can
reuse the one from class)

2. Create a script that:
✱ Simulates 100 GDP paths.
✱ Computes mean & variance of final GDP (GDP in last period T).
✱ Plots a histogram of final GDP values.

3. Document with comments and save plots as PNG and MATLAB figure.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 35

Files & Deliverables

▶ Function: gdp_simulate.m
▶ Driver script (starter): week2_homework_starter.m
▶ Expected outputs:

✱ week2_homework_solution.m
✱ week2_final_gdp_hist.png, week2_final_gdp_hist.fig
✱ (Optional) week2_homework_workspace.mat

▶ Keep your code reproducible: set rng(123) in the driver.

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 36

Next Week

Next week: Block B – Numerical Tools & Data Handling
Week 3 – Data Input/Output & Plotting

Recap & Motivation Conditionals Loops Functions Coding Practices Hands-On Practice Homework / Practice # 37

	Recap & Motivation
	Conditionals
	Loops
	Functions
	Coding Practices
	Hands-On Practice
	Homework / Practice

