Computational Tools for Macroeconomics using MATLAB

Week 4 – Matrix Algebra for Economics

Cristiano Cantore

Sapienza University of Rome

Learning Outcomes

By the end of this week, you will be able to:

- 1. Create and manipulate matrices in MATLAB.
- 2. Understand the difference between element-wise and matrix operations.
- 3. Solve systems of linear equations relevant to economics.
- 4. Compute matrix inverses, determinants, and eigenvalues.
- 5. Apply matrix algebra to a simple macroeconomic model (IS-LM).

Creating Vectors and Matrices - Recap

```
% Row and column vectors
r = [1 \ 2 \ 3 \ 4]; % 1x4 row vector
c = [1; 2; 3; 4]; % 4x1 column vector
% Matrices (rows separated by semicolons)
A = [1 \ 2; \ 3 \ 4]; \ % 2x2 matrix
B = [5 6; 7 8]; % 2x2 matrix
% Common constructors
z = zeros(3,2); % 3x2 of zeros
o = ones(2,3); % 2x3 of ones
          % 3x3 identity
I = eye(3);
D = diag([10 \ 20 \ 30]); % diagonal matrix
```

Colon Operator and linspace - Recap

► Use a:b:c for integer-like sequences; linspace for exact endpoint control.

Indexing and Slicing - Recap

Concatenation and Reshape

- ► reshape changes shape, not order (fills by columns).
- Use [] to concatenate; dimensions must match.

Replication: repmat and Implicit Expansion

Prefer implicit expansion when available; it is cleaner and faster.

Basic Arithmetic

- Scalars act on all entries.
- .^ is element-wise power (vs matrix power ^).

Element-wise vs Matrix Operations (Important!)

Element-wise

Matrix (linear algebra)

```
A .* B % multiply each entry A * B % matrix product A ./ B % divide each entry A \ b % solve Ax = b A .^ 2 % square each entry A ^ 2 % A * A (square)
```

Common pitfall: Dimension mismatch.

```
% If sizes don't align for A * B, MATLAB errors:
% Error using *
% Inner matrix dimensions must agree.
```

Useful Helpers

```
A = rand(3,4);
                   % random 3x4
size(A)
                     % [3 4]
length(A)
                     % \max(\dim) -> 4
numel(A)
                     % # of elements \rightarrow 12
                     % column sums (1 keeps rows)
sum(A, 1)
sum(A, 2)
                     % row sums (2 keeps cols)
mean(A, 1)
                     % column means
\max(A,[],2)
                     % row-wise max
```

Remember the dimension flag: 1=columns, 2=rows.

Micro-exercise

Given

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}.$$

- 1. Compute A + B, A . * B.
- 2. Extract the second column of A and call it c2.
- 3. Form the 2x2 matrix C by stacking C^2 and a vector of ones.
- 4. Try $\mathbb{A} \times \mathbb{B}'$ and explain why transpose is needed.

Solving Linear Systems

- ▶ Most of the time in Economics we solve (linear) systems of equations.
- Example: Represent IS-LM as a linear system: Ax = b.
- Use MATLAB tools:
 - * A\b (preferred method).
 - * inv (A) *b (less efficient, can be numerically unstable).
- Work through a 2×2 system demo.

IS-LM: Equations, Calibration, and Matrix Form

Step 1: Model equations

IS:
$$Y = \overline{A} - \alpha i$$
 $(\alpha > 0)$
LM: $i = \beta Y - \frac{M}{P}$ $(\beta > 0)$

LM:
$$i = \beta Y - \frac{M}{P}$$
 $(\beta > 0)$

Economic meaning: IS has negative slope $(\partial Y/\partial i < 0)$; LM has positive slope $(\partial i/\partial Y > 0)$.

IS-LM: Equations, Calibration, and Matrix Form

Step 1: Model equations

IS:
$$Y = \overline{A} - \alpha i$$
 $(\alpha > 0)$
LM: $i = \beta Y - \frac{M}{P}$ $(\beta > 0)$

Economic meaning: IS has negative slope $(\partial Y/\partial i < 0)$; LM has positive slope $(\partial i/\partial Y > 0)$.

Step 2: Calibrate parameters (example)

$$\bar{A} = 100$$
, $\alpha = 0.5$, $\beta = 0.2$, $\frac{M}{P} = 50$.

Economic Motivation: IS-LM as a System

Step 3: Move terms to the left-hand side

$$\underbrace{Y + \alpha i}_{\text{IS in LHS}} = \bar{A} \implies [1 \ \alpha] \begin{bmatrix} Y \\ i \end{bmatrix} = \bar{A}$$

$$\underbrace{-\beta Y + i}_{\text{LM in LHS}} = -\frac{M}{P} \implies [-\beta \ 1] \begin{bmatrix} Y \\ i \end{bmatrix} = -\frac{M}{P}$$

Economic Motivation: IS-LM as a System

Step 3: Move terms to the left-hand side

$$\underbrace{Y + \alpha i}_{\text{IS in LHS}} = \bar{A} \implies [1 \ \alpha] \begin{bmatrix} Y \\ i \end{bmatrix} = \bar{A}$$

$$\underbrace{-\beta Y + i}_{\text{IM in IHS}} = -\frac{M}{P} \implies [-\beta \ 1] \begin{bmatrix} Y \\ i \end{bmatrix} = -\frac{M}{P}$$

Step 4: Stack the two equations: Ax = b

$$\begin{bmatrix} 1 & \alpha \\ -\beta & 1 \end{bmatrix} \begin{bmatrix} Y \\ i \end{bmatrix} = \begin{bmatrix} \bar{A} \\ -\frac{M}{P} \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 & 0.5 \\ -0.2 & 1 \end{bmatrix} \begin{bmatrix} Y \\ i \end{bmatrix} = \begin{bmatrix} 100 \\ -50 \end{bmatrix}.$$

MATLAB Tools for Linear Systems

- Preferred: A\b (backslash operator).
 - * Efficient, stable.
 - * Adapts method to the system (Gaussian elimination, LU, etc.).
- ► Alternative: inv(A) *b.
 - Works but slower, less accurate.
 - * Avoid in serious computations.

Demo: 2x2 System in MATLAB

```
% Define matrix and vector
A = [1 \ 0.5; -0.2 \ 1];
b = [100; -50];
% Preferred solution
x = Ab; % returns [Y; i]
% Alternative (less efficient)
x inv = inv(A) *b;
disp(x) % show solution
disp(x inv)
% Compare the difference
diff norm = norm(x - x inv);
fprintf('Difference between methods: %.3e\n', diff norm);
% Check residuals
r = norm(A*x - b);
r inv = norm(A*x inv - b);
```

Micro-exercise

Solve the following system by hand and then check in MATLAB:

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 13 \end{bmatrix}$$

- 1. Write the system as Ax = b.
- 2. Use MATLAB's backslash operator to solve.
- 3. Verify with inv (A) *b.
- 4. Try with a 3x3 system of your choice.

Matrix Properties & Stability

- Compute key properties: determinant, inverse, rank, eigenvalues/eigenvectors.
- Link properties to economics (existence/uniqueness, stability).
- Recognize numerical issues (singularity, ill-conditioning).
- Apply eigenvalue analysis to a simple dynamic system.

Determinant, Invertibility, Rank

- ▶ **Determinant** (det(A)): measures volume scaling; $det(A) = 0 \Rightarrow singular$.
- ▶ Inverse (A^{-1}) : exists iff $det(A) \neq 0$; unique solution Ax = b iff A invertible.
- **Rank** (rank(A)): # of linearly independent columns/rows.

Key facts (square $A \in \mathbb{R}^{n \times n}$):

$$det(A) \neq 0 \iff rank(A) = n \iff A^{-1}$$
 exists.

Computing Properties in MATLAB

Remember: Prefer $x = A \setminus b$ to solve Ax = b; avoid forming inv (A).

Eigenvalues & Eigenvectors (Why we care)

- $ightharpoonup Av = \lambda v$ with $v \neq 0$.
- ► Static models: $det(A) = \prod_i \lambda_i$, $tr(A) = \sum_i \lambda_i$.
- **Dynamics:** For state transition $x_{t+1} = Tx_t$, stability if all $|\lambda_i(T)| < 1$.
- **Symmetric** A: real eigenvalues; orthogonal eigenvectors (spectral theorem).

Eigenvalues in MATLAB

Positive (Semi)Definiteness (PSD/PD)

- ► A symmetric PD $\Rightarrow x'Ax > 0$ for $x \neq 0$; all eigenvalues > 0.
- Common in quadratic costs, covariance matrices, least squares normal equations.

Checks: eigenvalues > 0 (PD) $/ \ge 0$ (PSD).

Numerical Notes: Singular vs Ill-Conditioned

- **Singular** (det(A) = 0): no unique solution.
- ▶ **Ill-conditioned**: solution exists but is numerically fragile.

Example: Stability Analysis of a 2D System

ightharpoonup Consider $x_{t+1} = Tx_t$ with

$$T = \begin{bmatrix} 0.85 & 0.10 \\ 0.15 & 0.90 \end{bmatrix}.$$

► Stable if all eigenvalues satisfy $|\lambda|$ < 1.

Micro-exercise

Let

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}, \quad T = \begin{bmatrix} 0.7 & 0.5 \\ 0.1 & 0.8 \end{bmatrix}.$$

- 1. Compute det(A), rank(A); is A invertible?
- 2. Find eigenvalues of A; verify $\det(A) = \prod \lambda_i$, $\operatorname{tr}(A) = \sum \lambda_i$.
- 3. Compute eigenvalues of T; is the dynamic $x_{t+1} = Tx_t$ stable?

Cholesky Factorization: Motivation

- \blacktriangleright Many macro models involve correlated shocks with a covariance matrix Σ .
- To simulate or estimate such systems, we need to generate random vectors ε satisfying:

$$Cov(\varepsilon) = \Sigma$$
.

► The **Cholesky factorization** provides a simple way to do this.

Definition and Properties

Cholesky decomposition:

$$\Sigma = LL'$$
, L lower triangular.

- ightharpoonup Exists if and only if Σ is **symmetric positive definite**.
- Unique when diagonal entries of L are positive.
- Useful for:
 - Simulating correlated random shocks.
 - * Solving systems Ax = b efficiently when A is SPD.

Numerical Example in MATLAB

Given

$$\Sigma = \begin{bmatrix} 1.5 & -0.9 \\ -0.9 & 2 \end{bmatrix},$$

compute its Cholesky factor L:

```
Sigma = [1.5 -0.9; -0.9 2];
L = chol(Sigma, 'lower');
L * L'
```

Numerical Example in MATLAB

Given

$$\Sigma = \begin{bmatrix} 1.5 & -0.9 \\ -0.9 & 2 \end{bmatrix},$$

compute its Cholesky factor L:

```
Sigma = [1.5 -0.9; -0.9 2];
L = chol(Sigma, 'lower');
L * L'
```

$$L = \begin{bmatrix} 1.2247 & 0 \\ -0.7348 & 1.2083 \end{bmatrix}, LL' \approx \Sigma.$$

Interpretation

- ► Suppose $u \sim N(0, I)$ (independent standard normals).
- ▶ Then $\varepsilon = Lu$ has:

$$Cov(\varepsilon) = L Cov(u) L' = LL' = \Sigma.$$

- In macro models:
 - * u are independent structural shocks.
 - * L introduces realistic correlations.

Homework Overview

Goal:

- Extend the IS-LM model using matrix algebra.
- Apply MATLAB tools to solve and analyze equilibrium.
- ► Introduce uncertainty using Cholesky factorization.

Part 1 – Solving the Extended IS-LM System

Model equations:

$$Y = \overline{A} + b_G G - \alpha i,$$

$$-\frac{M}{P} = \beta Y - \gamma i - \theta G.$$

- ► Write in matrix form: Ax = b with x = [Y, i]'.
- Solve using:
 - * x = A_(preferred)
 - * x_inv = inv(A) *b (for comparison)
- Perform comparative statics varying G.

MATLAB Setup for Part 1: Calibration

- ► Ā=120;
- b_{G} =0.8;
- \sim α =0.5;
- \triangleright β =0.25;
- $\sim \gamma = 1.2;$
- \triangleright θ =0.1;
- ► **G**=100;
- ► *MP*=80;
- ightharpoonup Compute equilibrium (Y, i).
- ► Loop over a grid of G to plot Y(G) and i(G).

Part 2 – Cholesky Decomposition of Covariance Matrix

$$\Sigma = \begin{bmatrix} 4 & 1.2 \\ 1.2 & 3 \end{bmatrix}.$$

- ightharpoonup Check that all eigenvalues of Σ are positive.
- ► Compute L = chol(Sigma, 'lower').
- ► Interpret what *L* means for correlated IS-LM shocks.

Part 3 – IS-LM with Correlated Shocks (Extension)

Now suppose the economy experiences stochastic shocks to the IS and LM equations:

$$Ax = b + \varepsilon$$
,

where

$$\varepsilon = Lu$$
, $u \sim N(0, I)$,

and L is the Cholesky factor of the covariance matrix Σ .

Then:

$$x = A^{-1}(b + \varepsilon) = A^{-1}b + A^{-1}Lu.$$

So $A^{-1}L$ maps structural shocks to equilibrium fluctuations in Y and i.

Interpretation of the Stochastic IS-LM System

Economic interpretation:

- \triangleright $A^{-1}b$: deterministic equilibrium (the one you solved in part 1).
- \triangleright $A^{-1}Lu$: random deviations from equilibrium, shaped by both:
 - * the economic structure (A), and
 - * the **correlation of shocks** (Σ) introduced via the Cholesky factor L.
- The matrix $A^{-1}L$ acts as a **transmission mechanism** from structural shocks to observable fluctuations in (Y, i).

Part 3 – IS-LM with Correlated Shocks (Extension)

► Introduce stochastic shocks:

$$Ax = b + \varepsilon$$
, $\varepsilon = Lu$, $u \sim N(0, I)$.

Compute simulated equilibria (simulating 10000 shocks):

$$x_t = A^{-1}(b + Lu_t).$$

- ► Analyze the empirical variance and covariance of (Y, i).
- Visualize (Y, i) scatter plot to show correlation.
- Important: To ensure reproducibility, set the random seed to 123.

Deliverables

Submit one MATLAB file named week4_homework_solution.m containing:

- 1. Parameter definitions and matrix setup.
- 2. Equilibrium solution and comparative statics for G.
- 3. Cholesky decomposition of Σ .
- 4. Simulation of correlated shocks and their effects.

Deadline: Next lab session.