Computational Tools for Macroeconomics using
MATLAB

Week 5 - Solving Nonlinear Equations in
Economics

Cristiano Cantore

Sapienza University of Rome

Learning Outcomes

By the end of this week, you will be able to:

1. Understand the difference between analytical and numerical solutions.
Implement root-finding algorithms (bisection, Newton-Raphson) in MATLAB.
Apply numerical methods to economic equilibrium problems.

Check for convergence and interpret stopping criteria.
Compare performance of different root-finding approaches.

AN S S

Roadmap of Week 5

» Motivation: Why do we need numerical solutions?
» Bisection method - safe but slow.

» Newton-Raphson method - fast but risky.

» Applying both to economic equilibrium problems.

» Comparing speed and accuracy of convergence.

Motivation: Analytical vs. Numerical Solutions

» Many macroeconomic models involve nonlinear equations that cannot be
solved analytically.
> Examples:

* Equilibrium in goods and labor markets
* First-order conditions from utility maximization
* Steady-state equations in growth models

» Numerical methods allow us to find approximate solutions where algebra fails.
> This week: we study root-finding algorithms for f(x) = o.

Examples of Nonlinear Equations in Economics

> Consumption-saving problem:
u'(c,) =B+’ (cyyy)
Nonlinear in ¢, r, and model parameters.

> Labor-leisure choice:
w(i—0)"% =\

Requires solving for [* numerically.

> Market equilibrium:
D(p)—S(p) =0
Often nonlinear in p.

~ BisectionMethod Newton-Raphson Method Economic Application: Labor Market Equilibrium ~ Challenge Homework #5

MATLAB

> MATLAB provides a clean environment for numerical iteration and visualization.
» We can easily:

* Write custom algorithms (bisection, Newton-Raphson)
* Visualize convergence paths and errors
* Compare performance of different methods

> We will code everything from scratch before using fzero () or fsolve ().

The Bisection Method: Intuition

> Goal: find x* such that f(x*) = o.
» Start from two points a and b such that f(a) and f(b) have opposite signs.
» By the Intermediate Value Theorem:

f(a)f(b) < 0= Ix* €[a, b] with f(x*) = 0.

» The algorithm repeatedly halves the interval:

a-+b
c=)

2

> At each step, we replace one endpoint with c.

Graphical Idea

» Start with f(a) and f(b) of opposite signs.

» Compute midpoint c.

> Keep the subinterval that contains the sign change.
> Repeat until |b—a| < &.

Graphical Idea

Bisection Method — Iteration 1

f(x)=x3-5x+1‘

Gi
|

10

2

4

6
8+

-10

25

1.5

0.5

-0.5

Graphical Idea

Bisection Method — Ilteration 2

f(x)=x3-5x+1‘

10

4
6
8+

-10

25

1.5

0.5

-0.5

Graphical Idea

Bisection Method — Iteration 3

f(x)=x3-5x+1‘

10

2

4

6
8+

-10

25

1.5

0.5

-0.5

Graphical Idea

Bisection Method — Iteration 4

f(x)=x3-5x+1‘

10
8
6
4
2

0
2
4
6
8+

-10

25

1.5

0.5

-0.5

Algorithm Steps

Choose a, b with f(a)f(b) < o.
Compute midpoint c = (a + b)/2.

If f(c)=0o0r|b—a| <g, stop.

If f(a)f(c) <o,setb=c;elsea=c.
Repeat until convergence.

A Sl

Bisection Method in MATLAB

% Define function
= @(x) x.”3 - 5*x + 1;

h

o\°

Initial bracket
a=0; b= 2;
tol = le—-4; maxit = 100;

for k = l:maxit
c (a + b)/2;
if abs(f(c)) < tol
break
elseif f(a)xf(c) < O
b = c;

else
a = c;

end
end

Convergence and Features

> Guaranteed convergence if f continuous and sign change exists.
> Linear convergence: error shrinks roughly by half each iteration.

* ~1 *
X\ — X |~5|xt—x |

> Stopping criterion:
If(c)) <€ or |[b—a|l<eg

> Works even if f(x) unknown or discontinuous.

Example: Market Equilibrium
» Supply and demand functions:
D(p)=20p" ">, S(p)=2+3p.

» Equilibrium: f(p) = D(p) — S(p) = o.
> Use bisection method to find p*.

f = Q@(p) 20%p."(=1.5) - (2 + 3*p);
a=20.5; b =25;
tol = le—-4; maxit = 100;

Newton-Raphson: Idea

» Goal: solve f(x) = o by linearizing f around current guess x;.
» Tangent-line update:

X1 = X — f'(x).
t

> Intuition: follow the tangent at (x,, f(x,)) down to the x-axis.
» Pros: very fast (quadratic) when close to the root.
> Cons: needs f* and a decent initial guess; can diverge.

Derivation via Taylor Expansion

> First-order Taylor around x,: f(x) = f(x,) +f (%) (X — X,).
> Set f(x,,,) = O:

)
f'(x)

o= f(x;) +f/(Xt) (Xeyq = Xp) = Xppq =X —

» Works for scalars and extends naturally to systems (Jacobian).

Algorithm (Pseudocode)

1. Choose initial guess x,, tolerance &, max iterations K.
2. Fort=0,1,...,K:

2. Evaluate f(x,) and f(x,).

2.2 If |f(x,)| < € (or |x, — x,_,| < €), stop.

fiox)
(%)

2.3 Update X, ,=x,—

f(x)
~L o<as<n.

2., (Optional) damping: x,,, = x,— &

Newton—Raphson in MATLAB (Scalar)

% f and derivative
= @(x) x.”"3 = 5*x + 1;
fp = @(x) 3*x.7"2 - 5;

h

X 1.5; % initial guess
tol = le-8; maxit = 50;

for it = l:maxit
fx = f(x);
fpx = fp(x);
if abs (fx) < tol, break; end
if abs(fpx) < le-12, warning(’Derivative near zero’); break;
x = x - fx/fpx; % update (alpha=1)
end

fprintf ('Root ~ %.10f (it=%d, |fl=%.1le)\n’, x, it, abs(f(x)));

Newton with Damping (Safeguard)

alpha = 0.5; % step size in (0,1] to stabilize
x = 1.5; tol = le-8; maxit = 50;

for it = l:maxit
fx = £(x); fpx = fp(x);
if abs (fx) < tol, break; end
if abs (fpx) < le-12, warning(’flat slope’); break; end

xnew = x — alpha » fx / fpx;
if ~isfinite(xnew), warning(’bad update’); break; end
X = XNew;

fprintf (Root ~ %.10f (it=%d, |f|=%.1le)\n’, x, it, abs(f(x))

end

> Why damping? Avoids overshooting/divergence when slope is poor.
> Practical: backtracking (reduce o if |f(x..,)| not improving).

Geometric Illustration (Newton with/without damping)

Newton—-Raphson: Damped vs. Undamped Traj ies
T T T T

25 T
f(x)
20 |-|—©— Undamped (a=1.0)
Damped (a=0.5)
Approx. root

Eo
5 A
10 - 2
st 1
-20 4
-250 0‘5 1‘ 1‘5 é 2‘5 1‘3 35
X
. o, S
> At x,, the tangent gives x,, = x; 700
t

» Undamped (a=1): large, efficient steps = fast (quadratic) when close.
» Damped (0<a<1): smaller steps = safer but slower (often linear far from root).

#22

Newton (undamped, o = 1.0) - Iteration 1

Newton (a=1): iteration 1
T T

25 T

20 - -

15 b

10 B

f(x)
1)

10| .

-15 - -

-20 |- .

25 I 1 1 I 1 1

Newton (undamped, o = 1.0) - Iteration 2

Newton (a=1): iteration 2
T T

25 T T

20 -

15

f(x)
1)

-15 - -

-20 |- .

25 I 1 1 I 1 1

Newton (undamped, o = 1.0) - Iteration 3

Newton (a=1): iteration 3
T T

25 T T

20 -

15

f(x)
1)

-15 - -

-20 - -

25 I 1 1 I 1 1

Newton (undamped, o = 1.0) - Iteration 4

f(x)

25

20

15

10

-10

-15

-20

-25

Newton (a=1): iteration 4
T T

3.5

Newton (undamped, o = 1.0) - Iteration 5

Newton (a=1): iteration 5
T T

25 T T

20 -

15

10

f(x)
1)

-10 - -

-15 - -

-20 - -

25 I 1 1 I 1 1

Newton (undamped, o = 1.0) - Iteration 6

Newton (a=1): iteration 6
T T

25 T T

20 -

15

10

f(x)
1)

10 - i

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (undamped, o = 1.0) - Iteration 7

Newton (a=1): iteration 7
T T

25 T T

20 -

15

10

f(x)
1)

-10 - -

-15 - -

-20 - -

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 1

f(x)

25

20

15

10

-10

-15

-20

-25

Damped Newton (a=0.5): iteration 1
T T T T

3.5

Newton (damped, o = 0.5) - Iteration 2

o5 Damped Newton (a=0.5): iteration 2
T T T T T

20 -

15

f(x)
1)

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 3

o5 Damped Newton (a=0.5): iteration 3
T T T T T

20 -

15

f(x)
1)

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 4

Damped Newton (a=0.5): iteration 4
T T T T

25 T

20 -

15

f(x)
1)

-15 - -

-20 - -

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 5

o5 Damped Newton (a=0.5): iteration 5
T T T T

20 -
15

10

f(x)
1)

10 - i

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 6

o5 Damped Newton (a=0.5): iteration 6
T T T T T

20 -
15

10

f(x)
1)

10 - i

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 7

o5 Damped Newton (a=0.5): iteration 7
T T T T T

20 -
15

10

f(x)
1)

10 - i

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 8

o5 Damped Newton (a=0.5): iteration 8
T T T T T

10

f(x)
1)

10 - i

-15 - -

.20 - i

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 9

Damped Newton (a=0.5): iteration 9
T T T T

25 T

20 -

15

10

f(x)
1)

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 10

Damped Newton (a=0.5): iteration 10
T T T T

25 T

20 -

15

10

f(x)
1)

25 I 1 1 I 1 1

Newton (damped, o = 0.5) - Iteration 11

o5 Damped Newton (a=0.5): iteration 11
T T T T

20 -
15

10

f(x)
1)

-10 - -

-15 - -

-20 - -

25 I 1 1 I 1 1

Convergence Behavior

» Quadratic near the root: error roughly squares each step.

> Sensitive to initial guess; multiple roots = different limits.
> Failure modes:

* f(x,) ~ o (huge steps / NaN).

* Jumps outside domain; non-smooth f.

* Cycles if update keeps bouncing.

» Remedies: damping/backtracking, trust regions, switch to bisection if stuck.

Built-ins: fzero, fsolve

> fzero (f,x0): scalar root finder (combines bracketing + Newton secant).
> fsolve (F, x0): system of equations (requires Optimization Toolbox).
> Good practice: code from scratch first (learning), then validate with built-ins.

Examples

Xxstar = fzero(@(x) x.”"3 - 5*xx + 1, 1.5);

F=@Q(z) [z(1)*2 + z(2) - 2;
exp(z(l)) + z(2) - 3 1;

z0 = [1; 1];

zstar = fsolve(F, z0);

Newton: Practical Checklist

> Set two stopping rules: on [f(x;)| and |x, — x,_,].

> Guard small derivatives: if [f'(x,)| tiny, damp or switch method.
> Keep iterates in domain (projection or backtracking).

> Limit step size and iterations; log diagnostics for debugging.

> If progress stalls, fallback to bisection on a bracket.

Bisection vs. Newton: A Comparison

> Bisection: Always converges, but slow (linear).
» Newton: Quadratic convergence near root, may diverge if guess is poor.
> Trade-off: Robustness vs. speed.

» Combine: start with bisection, switch to Newton once bracket small.

Systems of Equations and the Jacobian

For F(x) = 0, x € R", Newton’s method becomes

Xty = Xt_j(xt)_1F(Xt)

> J(x;) = Jacobian matrix of partial derivatives.
> Use fsolve (@ (x)F (x),x0) in MATLAB.

F =0Q(z) [z(1)"2 + z(2) - 2;
exp(z (1)) + z(2) - 31;

z0 = [1;1]1;
zstar = fsolve (F, z0);

Numerical Derivatives (if f* unknown)

df = @(f,x,h) (f(x+h)-f(x-h)) / (2%h);

> Centered difference ~ f'(x).

> Use small h (e.g. 10~ °) but beware of rounding errors.

Economic Application: Labor Market Equilibrium

A\

Consider a representative household choosing hours h € (0, 1) to maximize
utility in consumption c and leisure / = 1— h.
The utility function is given by U(c) = V(£).
Budget constraint:

c=(1—Twh+a—g,
where w is the exogenous wage, T the tax rate, a lump-sum transfers, and g
government spending.

First-order condition:
U (c)(1— T)w = V,(1—h).

This defines a nonlinear equation in h, which we will solve numerically.

Equilibrium Condition (Scalar Nonlinear Equation)

Z(hy=U.c(h))(1—T)w — V,(1—h) =0,
where c(h) = (1—T)wh+a—g.
» The equilibrium labor supply h™* satisfies Z(h™) = o.

» Once h™ is found, compute ¢* = (1— T)wh™ +a—g.

> This is a simple yet realistic example of solving an economic equilibrium as a
root-finding problem.

Functional Forms for the Demo

> Preferences: CRRA in consumption and separable disutility of work:

C1—0 —1 £1+¢

U(Q) = ——— Udlo)=c ’, V(ll)zxm, v, (1) = x1°.

> Substituting into the first-order condition:

Z(hy=(1—Twh+a—g) °(1—T)w—x(1—h)®.

> We solve Z(h) = o for h € (0, 1) numerically.

Calibration

> Parameters ensuring a single interior root:

w=1 T=0, a=0.10, ¢g=0, 0=2, ¢=2, X=100.

> Interpretation:
* High x guarantees a meaningful disutility of work.
* The root lies roughly around h* ~ 0.3-0.5.
* The equation can be solved with both Bisection and Damped Newton.

Optimal hours h™

w=1; a=0.5; sigma=2; chi=3.7; phi=2; tau=0; g=0;

Z = @(h) ((1-tau)s*wxh + a-g).”(-sigma)...
.x(1l-tau)*w — chix* (1-h)."phi;

dz = @(h) -sigmax((l-tau)*wxh + a - g).”(-sigma-1)...
* (1-tau) *w + chixphi* (1-h).” (phi-1);

h = 0.5; alpha = 0.5; tol = 1le-8;

for it=1:60
Zzh = Z(h); if abs(Zzh) < tol, break; end
dzh = dz(h); if abs(dZzh) < 1le-10, break; end
h = h - alpha * Zh/dZh; % damped Newton
h min (max (h, 0+1e-8), 1-1e-8); %

project to (0,1)

end
fprintf ("hx = %.6f, 7Z=%.le, it=%d\n’, h, Z(h), it);

Optimal hours h™

» Interpret the results.

Week 5 Challenge — Labor Market Equilibrium

» Now calibrate T = 0.2 instead.
» Study equilibrium labor supply h™ from the condition

Z(h) = U (c(h)) (1— T)w—V,(1— h) = 0.

> Given the parameters above, solve numerically for h*.

» Compare methods:
6
]

1. Bisection on [10~°,1— 10").
2. Damped Newton (a = 0.5) starting from h, = 0.5.

> Report h™, number of iterations, and |Z(h™)| for each method.

Part 1 - Compare Bisection and Newton

% Parameters
w = 1; tau = 0.20; a = 0.50; g = 0;
sigma = 2; phi = 2; chi = 3.7;

o\°

Function 7 (h)
= @(h) (1 - tau) * w .» h + a - g;
@(h) c(h).”(-sigma) = (1 - tau) * w — chi * (1 - h).”phi;

N Q
Il

oe

Solve with both methods and print results

» Verify convergence and the sign of Z(h) near the root.

» Compare speed and accuracy.

> How does the tax rate affect the equilibrium labor supply?

Part 2 - Comparative Statics and Plots

> Loop over T € [0, 0.4] (e.g. 9 values).

> For each T, solve Z(h) = o by bisection and record h™ ().

» Plot equilibrium hours as a function of T.

Discussion - Interpreting Your Results

> Check that Z(h™) ~ o for all solutions.
» Compare iteration counts between methods.

> Examine and interpret h™ (7).

Week 5 Homework: Solving Nonlinear Equations

> The homework contains three exercises:

1. Nonlinear IS-LM model (system of equations).
2. Labor supply problem with varying preferences.
3. Convergence speed comparison.

Exercise 1 — Nonlinear IS-LM Equilibrium

» Consider the IS-LM system:

Y=C,+c(Y=T)+I,— B’ +G,
M/P = RY — Ai.

» Parameters: C, =50, c=0.8,/, =60, =2, T =50, G =100, M/P = 400,
k= 0.5, A =20.

> Solve for (Y™, i) using £solve (or your own Newton routine), starting from
two guesses.

> Plot the IS and LM curves and verify that the equilibrium lies on the
positive-interest branch.

Exercise 2 — Labor Supply and Risk Aversion

> Revisit the labor supply condition:

Z(h)=c(h)y°(1—Tw—x(1—h)® =0, c(h)=(1—T)wh+a—g.

» Baseline:w=1,T=0.2,a=0.5,g=0,¢ =2, X =3.7.
> Vary 0 € {1,2,3,4,5} and solve for h* (o) using the Bisection method.

> Plot h*(0) and interpret:

* How does greater risk aversion affect labor supply?
* Does h™ decline as o rises?

Exercise 3 — Comparing Convergence Speed

> Using the baseline Z(h), solve for h* with:

1. Bisection (full bracket, [107°, 1—10"°]),
2. Damped Newton (o = 0.5) from initial guesses h, = 0.2, 0.5, 0.8.
> Record:
Method, Starting guess, Iterations, h*, |Z(h™)|.

> Discuss:

* When does Newton outperform Bisection?
* Under what conditions could it fail?

Submission Guidelines

» Submit one script named week5_homework_solution.mand any plots
generated.
> Include:

1. Clear comments for each exercise.
2. Printed results for h*, Y™, i*, iteration counts.
3. Plots for IS-LM equilibrium and Labor Supply comparative statics.

» Deadline: before the Week 6 session.

	Motivation
	Bisection Method
	Newton–Raphson Method
	Economic Application: Labor Market Equilibrium
	Challenge
	Homework

