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Learning Outcomes

By the end of this week, you will be able to:
1. Understand the di�erence between unconstrained and constrained

optimization.
2. Use MATLAB’s built-in optimization functions (‘fminsearch‘, ‘fminunc‘, ‘fmincon‘).
3. Implement simple search methods (e.g., golden section search) manually.
4. Calibrate model parameters to match economic targets.
5. Assess goodness of fit for calibration exercises.
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Optimization in Economics

É Agents choose variables to maximize utility or minimize costs.
É Typical examples:

Q Household: maxc,lU(c, l) subject to budget/time constraint.
Q Firm: maxK,L Π(K, L) given production function.

É Optimization⇒ equilibrium conditions (first-order conditions).

Motivation Unconstrained Optimization in Practice Constrained Optimization Calibration Challenge # 3



Unconstrained vs. Constrained Problems

Unconstrained:

max
x
f (x)

⇒ f ′(x∗) = 0

Constrained:

max
x
f (x) s.t. g(x) = 0, h(x) ≤ 0

⇒ use Lagrange multipliers.

Economic Interpretation
Constraints represent scarce resources, time, or budgets.
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Link to Previous Topics

É Week 5: root-finding⇒ find f (x) = 0.
É Optimization⇒ find f ′(x) = 0 (and check curvature).
É Both rely on iterative numerical methods.
É Same logic, di�erent purpose: locating maxima/minima instead of roots.
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Visualizing Optimization

Maximum where slope = 0 and curvature < 0.
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Unconstrained Optimization in Practice

É In many economic problems, we maximize or minimize a smooth function f (x).
É If derivatives are available⇒ analytical solution.
É Otherwise: use search algorithms.
É MATLAB o�ers built-in routines:

Q fminsearch: derivative-free (Nelder–Mead simplex).
Q fminunc: uses gradients (if available).
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Example: Quadratic Function

É Let f (x) = −(x − 2)
2

+ 4
É Theoretical maximum: x∗ = 2, f (x∗) = 4
É We’ll find it numerically.

Key idea
Search iteratively for x that maximizes f (x) or minimizes −f (x).
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Manual (Grid) Search

% Define function
f = @(x) -(x-2).^2 + 4;

% Define grid of points
x = linspace(0, 4, 100);

% Evaluate and find maximum
y = f(x);
[~, idx] = max(y);

% Display result
x_star = x(idx)
y_star = y(idx)

Pros and Cons
+ Simple to understand. – Ine�cient and imprecise (depends on grid density).
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Golden Section Search (1D)

É E�cient way to locate a maximum/minimum in one dimension.
É Does not require derivatives.
É Iteratively shrinks interval [a,b] until length < ϵ.

x1 = b− ϕ(b− a), x2 = a+ ϕ(b− a), ϕ = 0.618

If f (x1) < f (x2)⇒ a = x1, else b = x2
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Why ϕ = 0.618?
É The golden-section search keeps the same proportion each time the interval

[a,b] is reduced.
É The ratio between the whole interval and the larger subinterval equals the ratio

between the larger and the smaller:
b− a
b− x1

=
b− x1
x1 − a

= r

É Solving r2 = r+ 1 gives r = 1+
p
5

2 ≈ 1.618
É The inverse of this number is:

ϕ =
1
r

=

p
5− 1
2

≈ 0.618

Intuition
ϕ keeps the search interval shrinking in constant proportion, reusing previous
function evaluations e�ciently.
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Example: Golden Section Search

f = @(x) -(x-2).^2 + 4;
a = 0; b = 4; tol = 1e-4;
phi = (sqrt(5)-1)/2;

while (b - a) > tol
x1 = b - phi*(b - a);
x2 = a + phi*(b - a);
if f(x1) < f(x2)

a = x1;
else

b = x2;
end

end
x_star = (a + b)/2;
f_star = f(x_star);
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Built-In Solver: fminsearch

f = @(x) -(x-2).^2 + 4;
x0 = 1; % starting guess
[x_star, fval] = fminsearch(@(x) -f(x), x0);
fprintf(’Optimum: x = %.4f, f(x) = %.4f\n’, x_star, -fval);

Key Points
É fminsearch minimizes by default → use −f (x) for maximization.
É Works without gradients.
É Sensitive to starting values in multimodal problems.
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Comparing Search Methods

É Both methods find x∗ = 2.
É fminsearch is faster, but golden section is more robust.
É Choice depends on dimensionality and smoothness of f (x).Motivation Unconstrained Optimization in Practice Constrained Optimization Calibration Challenge # 14



Why Constrained Optimization?

É In economics, agents face constraints:
Q Consumers: budget or time.
Q Firms: technology or capacity.

É Typical problem:
max
x
f (x) s.t. g(x) = 0, h(x) ≤ 0

É Constraints define the feasible set.
É Solution requires balancing objectives and constraints.
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Lagrange Method (Concept)

É Combine objective and constraints:

L(x, λ) = f (x) + λ[b− g(x)]

É First-order conditions:
∂L
∂x

= 0,
∂L
∂λ

= 0

É λ (Lagrange multiplier) = shadow value of relaxing constraint.

Interpretation
How much utility or profit increases if the constraint is loosened by one unit.
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Example: Utility Maximization

É Preferences: U(c, l) = cα(1− l)1−α

É Budget constraint: c = wl+ (1+ r)a0 − T
É Choose l ∈ [0, 1] to maximize U(c, l)
É Parameters:

α = 0.3, w = 1, r = 0.02, a0 = .05, T = 0.1
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Using fmincon in MATLAB

% Parameters
alpha = 0.3; w = 1; r = 0.02; a0 = .05; T = 0.1;

% Objective (negative utility for minimization)
U = @(l) -((w*l + (1+r)*a0 - T).^alpha .* (1 - l).^(1 - alpha));

% Bounds and initial guess
l0 = 0.5; lb = 0; ub = 1;

% Solve
l_star = fmincon(U, l0, [], [], [], [], lb, ub);

fprintf(’Optimal labor supply: %.4f\n’, l_star);
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Inspecting the Solution

É Solver returns l∗ and optionally λ∗.
É Check:

Q Is 0 < l∗ < 1 (interior)?
Q Does U(l) decrease outside this range?

É Plot objective for visual confirmation.

Interpretation
At optimum, marginal benefit of leisure equals marginal cost of working.
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Plotting the Objective Function

l = linspace(0,1,100);
U_vals = -U(l); % convert back to positive utility
plot(l, U_vals, ’LineWidth’,1.5)
xlabel(’Labor supply l’); ylabel(’Utility’);
title(’Utility as a function of labor supply’);
grid on
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Plotting the Objective Function

É Why the initial dip?

É Because of plotting for negative values of C!
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Plotting the Objective Function

É Why the initial dip?
É Because of plotting for negative values of C!
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Common Issues in Constrained Problems

É Poor starting values⇒ local minima.
É Infeasible initial guesses.
É Flat regions or discontinuities.
É Incorrect constraint specification.

Practical Tips
Always:
É Test the objective over a grid.
É Check constraint satisfaction.
É Verify solution by plotting.
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Calibration as Optimization

É Economic models include parameters (θ) that must be chosen.
É Calibration: pick θ so that model moments match data moments.

min
θ

∑

i

�

mmodel
i (θ)− mdata

i

�2

É Equivalent to an optimization problem:

θ∗ = arg min
θ

loss(θ)

É Key question: how to define the loss function and choose solver?
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Example: Targeting Steady-State Labor

É Utility: U(c, l) = cα(1− l)1−α

É Budget: c = wl+ (1+ r)a0 − T
É Goal: choose α so that steady-state labor l∗ = 0.3
É Steps:

1. For a given α, compute l∗(α) using fmincon.
2. Define loss function: (l∗(α)− 0.3)

2

3. Minimize loss with fminsearch.
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Implementation in MATLAB

target = 0.3;

% Objective: difference between model and target
loss = @(alpha) (solve_lstar(alpha) - target)^2;

% Initial guess
alpha0 = 0.4;

% Minimize loss
alpha_star = fminsearch(loss, alpha0);

fprintf(’Optimal alpha = %.4f\n’, alpha_star);

Note
Here, solve_lstar(alpha) is a user-defined function that computes the optimal
l∗ for given α (using fmincon).
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Visualizing the Loss Function

alpha = linspace(0.1,0.9,50);
for i = 1:length(alpha)

L(i) = loss(alpha(i));
end
plot(alpha, L, ’LineWidth’, 1.5)
xlabel(’\alpha’); ylabel(’Loss’);
title(’Calibration Objective Function’);
grid on
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Assessing Calibration Fit

É After calibration, verify:
Q Does l∗(α∗) ≈ 0.3?
Q Is the loss near zero?
Q Are results robust to initial guess?

É Visual check: plot model vs. data target.

Good Practice
Report both α∗ and the resulting steady-state value l∗.
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Economic Interpretation

É Higher α → stronger preference for consumption → higher labor supply.
É Calibration ensures model reproduces realistic steady-state behavior.
É Same principle applies to larger models:

Q Solow model: match savings rate s to observed growth.
Q RBC model: choose β, σ, α to match targets.
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Takeaways

É Calibration = numerical optimization over parameters.
É Choice of objective function (loss) is crucial.
É Built-in solvers (fminsearch, fmincon) simplify the process.
É Always visualize and check fit.

Motivation Unconstrained Optimization in Practice Constrained Optimization Calibration Challenge # 29



Challenge: Calibration as Optimization

É Apply what we learned on optimization to an economic calibration.
É We will calibrate the Solow model savings rate s.
É Objective: make the model reproduce an observed (synthetic) output path ydatat .

min
s

∑

t

�

ymodelt (s)− ydatat

�2

É Two parts:
1. In class: manual grid search + optional fminsearch.
2. At home: full calibration comparing several solvers.
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The Solow Growth Model: Intuition
É A simple macro model describing how the economy accumulates capital over

time.
É Output is produced using capital Kt and technology At:

Yt = AtK
α
t , 0 < α < 1

É A fixed share of output, s, is saved and invested each period:

It = sYt

É Capital depreciates at rate δ:

Kt+1 = (1− δ)Kt + It

É The key parameter s (savings rate) determines how fast the economy grows.
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Simulating the Solow Model

É Given parameters (α, δ,n,g) and initial values (K0,A0), we can simulate the
model over time.

Yt = Kαt A
1−α
t

Kt+1 = (1− δ)Kt + sYt
At+1 = (1+ g)At

É By varying s, we change the entire output path {Yt}.
É Calibration: choose s so that simulated {Ymodelt (s)} matches observed {Ydatat }.

Key Idea
Optimization links theory (the Solow model) with data via parameter estimation.
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Part 1 — In-Class Challenge (15 min)

Goal: Find the savings rate s that minimizes the distance between Solow model
output and data.

1. Start with the provided starter file:
week6_challenge_starter.m

2. It uses the helper function:
solow_simulate(s, params, T)

3. Steps to implement:
Q Define the objective function: SSE(s) =

∑

t

�

Ymodelt (s)− Ydatat

�2

Q Create a grid for s ∈ [0.05,0.5]
Q Compute SSE(s) for each value
Q Find and mark s∗
Q Plot the objective: SSE vs s

4. Bonus: use fminsearch (with re-parameterization to enforce 0 < s < 1) to
automate the search.
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Expected Output (Visualization)

The objective (SSE) reaches its minimum near the true s = 0.24.
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Part 2 — Homework: Solow Model Calibration

Goal: Compare manual search and built-in MATLAB optimization tools.
1. Calibrate s to match an observed or simulated ydatat .
2. Compare results from:

Q Manual grid search
Q fminsearch (with re-parameterization to enforce 0 < s < 1)
Q fmincon (with bounds 0 ≤ s ≤ 1)

3. Produce and save:
Q A figure showing the objective function SSE vs s
Q A figure showing the fit of the model to the data
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Homework Deliverables & Guidelines
É Submit your MATLAB code and generated figures.
É Include a short comment (2–3 lines) comparing methods:

Q Which solver is faster?
Q Which is more robust?
Q Do they give similar s∗?

É Your figures should look like the examples below (if you use the same
calibration as in the challenge):

Save all figures in the Figures/ folder.
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