Computational Tools for Macroeconomics using MATLAB

Week 6 – Optimization & Calibration

Cristiano Cantore

Sapienza University of Rome

Learning Outcomes

By the end of this week, you will be able to:

- Understand the difference between unconstrained and constrained optimization.
- 2. Use MATLAB's built-in optimization functions ('fminsearch', 'fminunc', 'fmincon').
- 3. Implement simple search methods (e.g., golden section search) manually.
- 4. Calibrate model parameters to match economic targets.
- 5. Assess goodness of fit for calibration exercises.

Optimization in Economics

- Agents choose variables to maximize utility or minimize costs.
- Typical examples:
 - * Household: $\max_{c,l} U(c, l)$ subject to budget/time constraint.
 - * Firm: $\max_{K,L} \Pi(K,L)$ given production function.
- ▶ Optimization ⇒ equilibrium conditions (first-order conditions).

Unconstrained vs. Constrained Problems

Unconstrained:

Constrained:

$$\max_{x} f(x)$$

$$\max_{x} f(x)$$
 s.t. $g(x) = 0$, $h(x) \le 0$

$$\Rightarrow f'(x^*) = 0$$

⇒ use Lagrange multipliers.

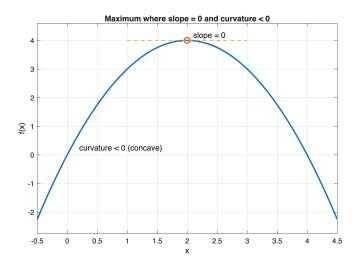
Economic Interpretation

Constraints represent scarce resources, time, or budgets.

Link to Previous Topics

- ▶ Week 5: root-finding \Rightarrow find f(x) = 0.
- ▶ Optimization \Rightarrow find f'(x) = o (and check curvature).
- Both rely on iterative numerical methods.
- Same logic, different purpose: locating maxima/minima instead of roots.

Visualizing Optimization



Maximum where slope = 0 and curvature < 0.

Unconstrained Optimization in Practice

- In many economic problems, we maximize or minimize a smooth function f(x).
- ► If derivatives are available ⇒ analytical solution.
- Otherwise: use search algorithms.
- MATLAB offers built-in routines:
 - * fminsearch: derivative-free (Nelder-Mead simplex).
 - * fminunc: uses gradients (if available).

Example: Quadratic Function

- ► Let $f(x) = -(x-2)^2 + 4$
- ► Theoretical maximum: $x^* = 2$, $f(x^*) = 4$
- We'll find it numerically.

Key idea

Search iteratively for x that maximizes f(x) or minimizes -f(x).

Manual (Grid) Search

```
% Define function
f = 0(x) - (x-2).^2 + 4;
% Define grid of points
x = linspace(0, 4, 100);
% Evaluate and find maximum
v = f(x);
[\sim, idx] = max(v);
% Display result
x star = x(idx)
y star = y(idx)
```

Pros and Cons

+ Simple to understand. - Inefficient and imprecise (depends on grid density).

Golden Section Search (1D)

- Efficient way to locate a maximum/minimum in one dimension.
- ► Does not require derivatives.
- ► Iteratively shrinks interval [a, b] until length $< \varepsilon$.

$$x_1 = b - \phi(b - a), \quad x_2 = a + \phi(b - a), \quad \phi = 0.618$$

If
$$f(x_1) < f(x_2) \Rightarrow a = x_1$$
, else $b = x_2$

Why $\phi = 0.618$ **?**

- ► The golden-section search keeps the same proportion each time the interval [a, b] is reduced.
- ► The ratio between the whole interval and the larger subinterval equals the ratio between the larger and the smaller:

$$\frac{b-a}{b-x_1} = \frac{b-x_1}{x_1-a} = r$$

- Solving $r^2 = r + 1$ gives $r = \frac{1+\sqrt{5}}{2} \approx 1.618$
- ► The inverse of this number is:

$$\phi = \frac{1}{r} = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

Intuition

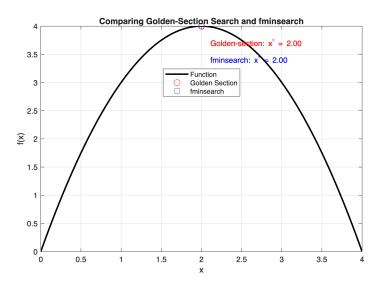
```
f = 0(x) - (x-2)^2 + 4:
a = 0; b = 4; tol = 1e-4;
phi = (sqrt(5)-1)/2;
while (b - a) > tol
    x1 = b - phi*(b - a);
    x2 = a + phi*(b - a);
    if f(x1) < f(x2)
       a = x1:
    else
        b = x2;
    end
end
x star = (a + b)/2;
f star = f(x star);
```

Built-In Solver: fminsearch

Key Points

- ▶ fminsearch minimizes by default \rightarrow use -f(x) for maximization.
- Works without gradients.
- Sensitive to starting values in multimodal problems.

Comparing Search Methods



- Both methods find $x^* = 2$.
- fminsearch is faster, but golden section is more robust.

Why Constrained Optimization?

- In economics, agents face constraints:
 - * Consumers: budget or time.
 - * Firms: technology or capacity.
- ► Typical problem:

$$\max_{x} f(x)$$
 s.t. $g(x) = 0$, $h(x) \le 0$

- Constraints define the feasible set.
- Solution requires balancing objectives and constraints.

Lagrange Method (Concept)

Combine objective and constraints:

$$\mathcal{L}(x,\lambda) = f(x) + \lambda[b - g(x)]$$

First-order conditions:

$$\frac{\partial \mathcal{L}}{\partial x} = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = 0$$

 \triangleright λ (Lagrange multiplier) = shadow value of relaxing constraint.

Interpretation

How much utility or profit increases if the constraint is loosened by one unit.

Example: Utility Maximization

- ► Preferences: $U(c, l) = c^{\alpha} (1 l)^{1 \alpha}$
- ▶ Budget constraint: $c = wl + (1 + r)a_0 T$
- ► Choose $l \in [0, 1]$ to maximize U(c, l)
- Parameters:

$$\alpha = 0.3$$
, $W = 1$, $r = 0.02$, $a_0 = .05$, $T = 0.1$

Using fmincon in MATLAB

```
% Parameters
alpha = 0.3; w = 1; r = 0.02; a0 = .05; T = 0.1;
% Objective (negative utility for minimization)
U = Q(1) - ((w*1 + (1+r)*a0 - T).^alpha .* (1 - 1).^(1 - alpha)
% Bounds and initial quess
10 = 0.5; 1b = 0; ub = 1;
& SOIVE
l_star = fmincon(U, 10, [], [], [], [], ub);
fprintf('Optimal_labor_supply: %.4f\n', 1 star);
```

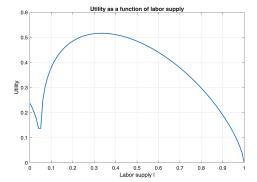
Inspecting the Solution

- ► Solver returns l^* and optionally λ^* .
- ► Check:
 - * Is o < l* < 1 (interior)?
 - * Does *U(l)* decrease outside this range?
- Plot objective for visual confirmation.

Interpretation

At optimum, marginal benefit of leisure equals marginal cost of working.

Plotting the Objective Function

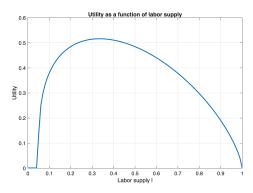


Plotting the Objective Function

► Why the initial dip?

Plotting the Objective Function

- Why the initial dip?
- Because of plotting for negative values of C!



Common Issues in Constrained Problems

- Poor starting values ⇒ local minima.
- Infeasible initial guesses.
- Flat regions or discontinuities.
- Incorrect constraint specification.

Practical Tips

Always:

- Test the objective over a grid.
- Check constraint satisfaction.
- Verify solution by plotting.

Calibration as Optimization

- **Economic models include parameters** (θ) that must be chosen.
- **Calibration:** pick θ so that model moments match data moments.

$$\min_{\theta} \sum_{i} \left[m_{i}^{model}(\theta) - m_{i}^{data} \right]^{2}$$

Equivalent to an optimization problem:

$$oldsymbol{ heta}^* = \arg\min_{oldsymbol{ heta}} \, \mathsf{loss}(oldsymbol{ heta})$$

Key question: how to define the loss function and choose solver?

Example: Targeting Steady-State Labor

- ► Utility: $U(c, l) = c^{\alpha} (1 l)^{1 \alpha}$
- ► Budget: $c = wl + (1 + r)a_0 T$
- Goal: choose α so that steady-state labor $l^* = 0.3$
- ► Steps:
 - 1. For a given α , compute $l^*(\alpha)$ using fmincon.
 - 2. Define loss function: $(l^*(\alpha) 0.3)^2$
 - 3. Minimize loss with fminsearch.

Implementation in MATLAB

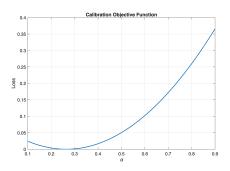
```
target = 0.3;
% Objective: difference between model and target
loss = @(alpha) (solve_lstar(alpha) - target)^2;
% Initial quess
alpha0 = 0.4;
% Minimize loss
alpha star = fminsearch(loss, alpha0);
fprintf('Optimal_alpha_=_%.4f\n', alpha_star);
```

Note

Here, solve_lstar(alpha) is a user-defined function that computes the optimal l^* for given α (using fmincon).

Visualizing the Loss Function

```
alpha = linspace(0.1,0.9,50);
for i = 1:length(alpha)
    L(i) = loss(alpha(i));
end
plot(alpha, L, 'LineWidth', 1.5)
xlabel('\alpha'); ylabel('Loss');
title('Calibration_Objective_Functi
grid on
```



Assessing Calibration Fit

- After calibration, verify:
 - * Does $l^*(\alpha^*) \approx 0.3$?
 - * Is the loss near zero?
 - * Are results robust to initial guess?
- Visual check: plot model vs. data target.

Good Practice

Report both α^* and the resulting steady-state value l^* .

Economic Interpretation

- ► Higher $\alpha \rightarrow$ stronger preference for consumption \rightarrow higher labor supply.
- Calibration ensures model reproduces realistic steady-state behavior.
- Same principle applies to larger models:
 - * Solow model: match savings rate s to observed growth.
 - * RBC model: choose β , σ , α to match targets.

Takeaways

- ► Calibration = numerical optimization over parameters.
- Choice of objective function (loss) is crucial.
- ▶ Built-in solvers (fminsearch, fmincon) simplify the process.
- Always visualize and check fit.

Challenge: Calibration as Optimization

- Apply what we learned on optimization to an economic calibration.
- We will calibrate the Solow model savings rate s.
- ightharpoonup Objective: make the model reproduce an observed (synthetic) output path y_t^{data} .

$$\min_{s} \sum_{t} \left[y_{t}^{model}(s) - y_{t}^{data} \right]^{2}$$

- Two parts:
 - 1. **In class:** manual grid search + optional fminsearch.
 - 2. At home: full calibration comparing several solvers.

The Solow Growth Model: Intuition

- ➤ A simple macro model describing how the economy accumulates capital over time.
- ▶ Output is produced using capital K_t and technology A_t :

$$Y_t = A_t K_t^{\alpha}$$
, $0 < \alpha < 1$

► A fixed share of output, s, is saved and invested each period:

$$I_t = sY_t$$

Capital depreciates at rate δ:

$$K_{t+1} = (1-\delta)K_t + I_t$$

► The key parameter s (savings rate) determines how fast the economy grows.

Simulating the Solow Model

► Given parameters (α, δ, n, g) and initial values (K_0, A_0) , we can simulate the model over time.

$$Y_t = K_t^{\alpha} A_t^{1-\alpha}$$

$$K_{t+1} = (1-\delta)K_t + sY_t$$

$$A_{t+1} = (1+g)A_t$$

- By varying s, we change the entire output path {Y_t}.
- ► Calibration: choose s so that simulated $\{Y_t^{model}(s)\}$ matches observed $\{Y_t^{data}\}$.

Key Idea

Optimization links theory (the Solow model) with data via parameter estimation.

Part 1 — In-Class Challenge (15 min)

Goal: Find the savings rate s that minimizes the distance between Solow model output and data.

1. Start with the provided starter file:

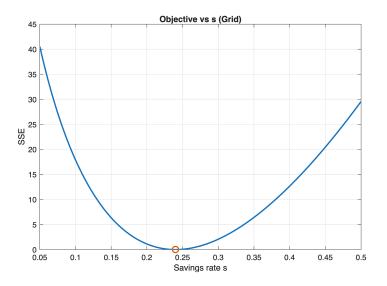
```
week6_challenge_starter.m
```

2. It uses the helper function:

```
solow_simulate(s, params, T)
```

- 3. Steps to implement:
 - * Define the objective function: $SSE(s) = \sum_{t} (Y_t^{model}(s) Y_t^{data})^2$
 - * Create a grid for $s \in [0.05, 0.5]$
 - * Compute SSE(s) for each value
 - * Find and mark s*
 - Plot the objective: SSE vs s
- 4. **Bonus:** use fminsearch (with re-parameterization to enforce 0 < s < 1) to automate the search.

Expected Output (Visualization)



The objective (SSE) reaches its minimum near the true s = 0.24.

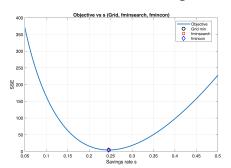
Part 2 — Homework: Solow Model Calibration

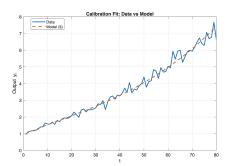
Goal: Compare manual search and built-in MATLAB optimization tools.

- 1. Calibrate s to match an observed or simulated y_t^{data} .
- 2. Compare results from:
 - * Manual grid search
 - * fminsearch (with re-parameterization to enforce 0 < s < 1)
 - * fmincon (with bounds $0 \le s \le 1$)
- 3. Produce and save:
 - A figure showing the objective function SSE vs s
 - * A figure showing the fit of the model to the data

Homework Deliverables & Guidelines

- ► Submit your MATLAB code and generated figures.
- ► Include a short comment (2–3 lines) comparing methods:
 - * Which solver is faster?
 - * Which is more robust?
 - * Do they give similar s*?
- ➤ Your figures should look like the examples below (if you use the same calibration as in the challenge):





Save all figures in the Figures / folder.