Computational Tools for Macroeconomics using
MATLAB

Week 6 - Optimization & Calibration

Cristiano Cantore

Sapienza University of Rome

Learning Outcomes

By the end of this week, you will be able to:

1. Understand the difference between unconstrained and constrained
optimization.
Use MATLAB's built-in optimization functions (‘fminsearch’, ‘fminunc’, ‘fmincon’).
Implement simple search methods (e.g., golden section search) manually.
Calibrate model parameters to match economic targets.
Assess goodness of fit for calibration exercises.

AT S

Optimization in Economics

> Agents choose variables to maximize utility or minimize costs.
» Typical examples:

* Household: max_ U(c, [) subject to budget/time constraint.

* Firm: max, | M(K, L) given production function.

» Optimization = equilibrium conditions (first-order conditions).

Unconstrained vs. Constrained Problems

Unconstrained: Constrained:
m)?xf(x) m)?xf(x) st.g(x)=0, h(x)<o0
=f'(x")=o0 = use Lagrange multipliers.

Economic Interpretation
Constraints represent scarce resources, time, or budgets.

Link to Previous Topics

» Week 5: root-finding = find f(x) = o.

» Optimization = find f'(x) = o (and check curvature).

> Both rely on iterative numerical methods.

» Same logic, different purpose: locating maxima/minima instead of roots.

Visualizing Optimization

Maxi where slope = 0 and curvature <0
T T T T

slope = 0

curvature < 0 (concave)

-0.5 0 0.5 1 15 2 25 3 35 4 45

Maximum where slope = 0 and curvature < 0.

Unconstrained Optimization in Practice

» In many economic problems, we maximize or minimize a smooth function f(x).

> If derivatives are available = analytical solution.

» Otherwise: use search algorithms.
> MATLAB offers built-in routines:

* fminsearch: derivative-free (Nelder-Mead simplex).
* fminunc: uses gradients (if available).

Example: Quadratic Function

> Letf(x)=—(x—2)*+4
> Theoretical maximum: x* =2, f(x*) = 4
» We'll find it numerically.

Key idea
Search iteratively for x that maximizes f(x) or minimizes —f(x).

Manual (Grid) Search

% Define function
f = 0(x) —(x=2).%2 + 4;

% Define grid of points
= linspace (0, 4, 100);

X

% Evaluate and find maximum
y = £(x);
[~, 1dx] = max(y);

% Display result
x_star = x(idx)
y_star = y(idx)

Pros and Cons
+ Simple to understand. - Inefficient and imprecise (depends on grid density).

Golden Section Search (1D)

» Efficient way to locate a maximum/minimum in one dimension.

» Does not require derivatives.

» Iteratively shrinks interval [a, b] until length < €.
xX,=b—¢(b—a), x,=a+¢(b—a), ¢=0.618

Iff(x,) <f(x,) > a=x,, elseb=x,

Why ¢ = 0.618?

» The golden-section search keeps the same proportion each time the interval
[a, b] is reduced.

> The ratio between the whole interval and the larger subinterval equals the ratio
between the larger and the smaller:

b—a b—x,

= =T
b—x, x,—a

> Solving r* = r+1gives r = % ~ 1.618
» The inverse of this number is:
J/5—1

1
p=-= ~ 0.618
r 2

Intuition

¢ keeps the search interval shrinking in constant proportion, reusing previous
function evaluations efficiently.

Example: Golden Section Search

f = Q(x) —(x-2)."2 + 4;
a=0; b=14; tol = le-4;
phi = (sqrt(5)-1)/2;

while (b - a) > tol
x1 = b - phix(b - a);

x2 = a + phix(b - a);
if f£(x1) < f£(x2)
a = x1;
else
b = x2;
end
end
X_star = (a + b)/2;
f_star = f(x_star);

Built-In Solver: fminsearch

f=0(x) —(x=2).%2 + 4;

x0 = 1; % starting guess

[x_star, fval] = fmlnsearch((x) —-f(x), x0);
fprintf (' Optimum: _x_=_%. f(x)_=.%.4f\n’, x_star, -fval);

Key Points

» fminsearch minimizes by default - use —f(x) for maximization.
» Works without gradients.

> Sensitive to starting values in multimodal problems.

Comparing Search Methods

Comparing Golden-Section Search and fminsearch
T T T T

4 T
Golden-sdgtion: X" = 2.00
il fminsearch: x N 2.00 1
Function
3 O Golden Section =
O fminsearch

25 .
¥ 2t .
15+ .
s 4
05 4

0 1 Il L 1 L L 1
0 0.5 1 15 2 2.5 3 3.5 4

» Both methods find x* = 2.
> fminsearch is faster, but golden section is more robust.

Why Constrained Optimization?

> In economics, agents face constraints:
* Consumers: budget or time.
* Firms: technology or capacity.
» Typical problem:
m)?xf(x) st.g(x)=o0, h(x) <0

» Constraints define the feasible set.
» Solution requires balancing objectives and constraints.

Lagrange Method (Concept)

» Combine objective and constraints:

L(x,A) =f(x) + A[b—g(x)]

» First-order conditions:
oL oL

— =0, — =0
ox oA

» A (Lagrange multiplier) = shadow value of relaxing constraint.

Interpretation

How much utility or profit increases if the constraint is loosened by one unit.

Example: Utility Maximization

> Preferences: U(c, [) = c(1—1)"¢

» Budget constraint: c=wl+ (1+r)a,—T
» Choose [€ [0, 1] to maximize U(c, [)
> Parameters:

a=0.3, w=1 r=0.02, a,=.05 T=0.1

Using fmincon in MATLAB

% Parameters
alpha = 0.3; w=1; r = 0.02; a0 = .05; T = 0.1;

% Objective (negative utility for minimization)
U= @(l) —((wxl + (l+r)=*alO - T)."”alpha . (1 - 1).7(1 - alpha)

% Bounds and initial guess

10 = 0.5; 1b = 0; ub = 1;
% Solve
1l_star = fmincon (U, 10, [1, [1, [1, [1, 1lb, ub);

fprintf (' Optimal,_labor supply: $.4f\n’, 1_star);

Inspecting the Solution

» Solver returns [* and optionally A *.
» Check:

* Iso < 1* < 1(interior)?
* Does U(l) decrease outside this range?

> Plot objective for visual confirmation.

Interpretation

At optimum, marginal benefit of leisure equals marginal cost of working.

Plotting the Objective Function

1l = linspace(0,1,100);
U_vals = -U(1); % convert back to positive utilit

plot (1, U_vals, ’'LineWidth’,1.5)

xlabel (' Labor _supply,1’); ylabel ('Utility’);
title('Utility_as_a,_function_of labor supply’);
grid on

Utility as a function of Iab'or supp!y

0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Labor supply |

Plotting the Objective Function

» Why the initial dip?

Plotting the Objective Function

» Why the initial dip?
» Because of plotting for negative values of C!

Utility as a function of Iabvor supp!y

0.6

o 0.1 02 03 04 05 0.6 0.7 08 0.9 1
Labor supply |

Common Issues in Constrained Problems

» Poor starting values = local minima.
> Infeasible initial guesses.

> Flat regions or discontinuities.

> Incorrect constraint specification.

Practical Tips

Always:
> Test the objective over a grid.
» Check constraint satisfaction.

» Verify solution by plotting.

Calibration as Optimization

» Economic models include parameters (0) that must be chosen.
» Calibration: pick 6 so that model moments match data moments.

min Z I:m’(nodel(e) _ m;jataT

0 -
i

> Equivalent to an optimization problem:

0" =arg mein loss(0)

> Key question: how to define the loss function and choose solver?

Example: Targeting Steady-State Labor

> Utility: U(c,) =c“(1—1)""7
» Budget: c=wl+ (1+r)a,—T
> Goal: choose a so that steady-state labor [* = 0.3

> Steps:
1. For a given a, compute [* (&) using fmincon.
2. Define loss function: (" (a)— 0.3)
3. Minimize loss with fminsearch.

Implementation in MATLAB
target = 0.3;

% Objective: difference between model and target
loss = @ (alpha) (solve_lstar (alpha) - target)"2;

% Initial guess
alpha0 = 0.4;

% Minimize 1loss
alpha_star = fminsearch(loss, alphaO);

fprintf (' Optimal,_alpha, =_%.4f\n’, alpha_star);

Note
Here, solve_lstar (alpha) is a user-defined function that computes the optimal
[* for given a (using fmincon).

Visualizing the Loss Function

Obijective Function

alpha = linspace(0.1,0.9,50);
for i = l:length(alpha)

L(i) = loss(alpha(i));
end

plot (alpha, L, ’"LineWidth’, 1.5)
xlabel (' \alpha’); ylabel(’'Loss’);
title(’'Calibration_Objective Functi
grid on

Assessing Calibration Fit

> After calibration, verify:
* Does [*(a™) ~0.3?
* |s the loss near zero?
* Are results robust to initial guess?

» Visual check: plot model vs. data target.

Good Practice

Report both o™ and the resulting steady-state value [*.

Economic Interpretation

» Higher a - stronger preference for consumption - higher labor supply.
» Calibration ensures model reproduces realistic steady-state behavior.

» Same principle applies to larger models:

* Solow model: match savings rate s to observed growth.
* RBC model: choose 3, 0, a to match targets.

Takeaways

» Calibration = numerical optimization over parameters.

» Choice of objective function (loss) is crucial.

» Built-in solvers (fminsearch, fmincon) simplify the process.
» Always visualize and check fit.

Challenge: Calibration as Optimization

» Apply what we learned on optimization to an economic calibration.
» We will calibrate the Solow model savings rate s.

» Objective: make the model reproduce an observed (synthetic) output path ydam.

t
msin Z [y{nodel(s) _ y;jata:lz
t

> Two parts:

1. In class: manual grid search + optional fminsearch.
2. At home: full calibration comparing several solvers.

The Solow Growth Model: Intuition

» A simple macro model describing how the economy accumulates capital over
time.

» Output is produced using capital K, and technology A;:

Y,=AK, o<a<n

> A fixed share of output, s, is saved and invested each period:

I, = sY,

> Capital depreciates at rate 6:

Kiq = (1= 0)K + 1

» The key parameter s (savings rate) determines how fast the economy grows.

Simulating the Solow Model

> Given parameters (a, 6, n, g) and initial values (K, A,), we can simulate the
model over time.
Y, = K{ATY
Kipqg = (1= 06)K; + Y,
A= (14 9)A

> By varying s, we change the entire output path {Y,}.

> Calibration: choose s so that simulated {Y{"Odd(s)} matches observed {Yf'at"}.

Key Idea

Optimization links theory (the Solow model) with data via parameter estimation.

Part 1 — In-Class Challenge (15 min)

Goal: Find the savings rate s that minimizes the distance between Solow model
output and data.

1. Start with the provided starter file:

week6_challenge_starter.m

2. It uses the helper function:

solow_simulate (s, params, T)

3. Steps to implement:

2
Define the objective function: SSE(s Zt(ymodel(s Yfam)

Create a grid for s € [0.05, 0.5]
Compute SSE(s) for each value
Find and mark s*

Plot the objective: SSE vs s

*

* ¥ ¥ %

4. Bonus: use fminsearch (with re-parameterization to enforce o <s < 1) to
automate the search.

Expected Output (Visualization)

Obijective vs s (Grid)
T T

C Il 1 Il Il
0.25 0.3 0.35 0.4 0.45 0.5
Savings rate s

The objective (SSE) reaches its minimum near the true s = 0.24.

Part 2 — Homework: Solow Model Calibration

Goal: Compare manual search and built-in MATLAB optimization tools.

1. Calibrate s to match an observed or simulated y?*.

2. Compare results from:

* Manual grid search
* fminsearch (with re-parameterization to enforce 0 <s < 1)
* fmincon (with boundso <s<1)

3. Produce and save:

* A figure showing the objective function SSE vs s
* A figure showing the fit of the model to the data

Homework Deliverables & Guidelines

» Submit your MATLAB code and generated figures.
» Include a short comment (2-3 lines) comparing methods:
* Which solver is faster?
* Which is more robust?
* Do they give similar s*?
» Your figures should look like the examples below (if you use the same
calibration as in the challenge):

400 Objective vs s (Grid, fmincon) Fit: Data vs Model

0
005 01 015 02 025 03 035 04 045 05 ° 10 20 30 40 50 60 70 80
Savings rate s t

Save all figures in the Figures/ folder.

	Motivation
	Unconstrained Optimization in Practice
	Constrained Optimization
	Calibration
	Challenge

